Envoy使用单个进程多线程体系架构。一个主线程控制各个零散的协作任务,如一些工作线程执行监听、过滤和转发任务。一旦某个连接被一个监听器接受,这个连接将会一直运行在一个工作线程上。这使得大多数Envoy在很大程度上是单线程的(令人尴尬的并行),而在工作线程之间有少量复杂的逻辑处理。通常Envoy是100%非阻塞模式,对于大多数工作负载,我们建议将工作线程的数量配置等同于机器上硬线程的数量。
如果事件处理的逻辑能迅速完成,并且不会发起新的 IO 请求,比如只是在内存中记个标识,则直接在 IO 线程上处理更快,因为减少了线程池调度。 但如果事件处理逻辑较慢,或者需要发起新的 IO 请求,比如需要查询数据库,则必须派发到线程池,否则 IO 线程阻塞,将导致不能接收其它请求。 如果用 IO 线程处理事件,又在事件处理过程中发起新的 IO 请求,比如在连接事件中发起登录请求,会报“可能引发死锁
在PHP初期,是作为单进程的CGI来运行的,所以并没有考虑线程安全问题。 我们可以随意的在全局作用域中设置变量并在程序中对他进行修改、访问,内核申请的资源如果没有正确的释放, 也会在CGI进程结束后自动地被清理干净。 后来,php被作为apache多进程模式下的一个模块运行,但是这仍然把php局限在一个进程里, 我们设置的全局变量,只要在每个请求之前将其正确的初始化,并在每个请求之后正确的清理干净
在使用TensorFlow进行异步计算时,队列是一种强大的机制。 正如TensorFlow中的其他组件一样,队列就是TensorFlow图中的节点。这是一种有状态的节点,就像变量一样:其他节点可以修改它的内容。具体来说,其他节点可以把新元素插入到队列后端(rear),也可以把队列前端(front)的元素删除。 为了感受一下队列,让我们来看一个简单的例子。我们先创建一个“先入先出”的队列(FIFOQ
里程定线是根据指定线的范围来确定路由上对应的线对象。应用场景如当知道某一路段发生阻塞,能够确定该路段相对精确的位置范围。 下面以长春数据为例,一条路(路由 ID 为1690的路由)在距离路口 10-800km 之间的发生堵塞。 地图加载完成后进行里程定线分析服务,首先根据 RouteID 获得路由对象,路由对象查询成功之后才能进行后续的里程定线操作。里程定线的接口使用方法如下: // 通过SQL查
前面一章讲了线程间同步,提到了信号量、互斥量、事件集等概念;本章接着上一章的内容,讲解线程间通信。在裸机编程中,经常会使用全局变量进行功能间的通信,如某些功能可能由于一些操作而改变全局变量的值,另一个功能对此全局变量进行读取,根据读取到的全局变量值执行相应的动作,达到通信协作的目的。RT-Thread 中则提供了更多的工具帮助在不同的线程中间传递信息,本章会详细介绍这些工具。学习完本章,大家将学会
在多线程实时系统中,一项工作的完成往往可以通过多个线程协调的方式共同来完成,那么多个线程之间如何 “默契” 协作才能使这项工作无差错执行?下面举个例子说明。 例如一项工作中的两个线程:一个线程从传感器中接收数据并且将数据写到共享内存中,同时另一个线程周期性的从共享内存中读取数据并发送去显示,下图描述了两个线程间的数据传递: 如果对共享内存的访问不是排他性的,那么各个线程间可能同时访问它,这将引起数
当我在2.3节提到线程的时候,我说过线程就是一种进程。现在我会更仔细地解释它。 当你创建进程时,操作系统会创建一块新的地址空间,它包含text段、static段、和堆区。它也会创建新的“执行线程”,这包括程序计数器和其它硬件状态,以及运行时栈。 我们目前为止看到的进程都是“单线程”的,也就是说每个地址空间中只运行一个执行线程。在这一章中,你会了解“多线程”的进程,它在相同地址空间内拥有多个运行中的
线程被定义为程序的执行路径。 每个线程定义一个独特的控制流。 如果您的应用程序涉及复杂且耗时的操作(如数据库访问或某些强烈的I/O操作),那么设置不同的执行路径或线程通常很有帮助,每个线程执行特定的工作。 线程是轻量级进程。 使用线程的一个常见示例是现代操作系统的并发编程的实现。 线程的使用可以节省CPU周期的浪费并提高应用程序的效率。 到目前为止,我们编译了程序,其中单个线程作为单个进程运行,该
但即使一门技术同时满足上述要求,也未必适合你。每个人还需要结合自己的特质和兴趣来选择合适的技术,否则很可能会半途而废。
线程间通讯接口 模块 信号量 信号量接口 互斥量 互斥量接口 事件 事件接口 邮箱 邮箱接口 消息队列 消息队列接口 信号 信号接口 结构体 struct rt_ipc_object IPC基类控制块 更多... 宏定义 #define RT_IPC_FLAG_FIFO 0x00 先进先出模式 #de
很多情况下,使用信号来终止一个长时间运行的线程是合理的。这种线程的存在,可能是因为工作线程所在的线程池被销毁,或是用户显式的取消了这个任务,亦或其他各种原因。不管是什么原因,原理都一样:需要使用信号来让未结束线程停止运行。这里需要一种合适的方式让线程主动的停下来,而非让线程戛然而止。 你可能会给每种情况制定一个独立的机制,这样做的意义不大。不仅因为用统一的机制会更容易在之后的场景中实现,而且写出来
线程标识类型是std::thread::id,可以通过两种方式进行检索。第一种,可以通过调用std::thread对象的成员函数get_id()来直接获取。如果std::thread对象没有与任何执行线程相关联,get_id()将返回std::thread::type默认构造值,这个值表示“没有线程”。第二种,当前线程中调用std::this_thread::get_id()(这个函数定义在<th
2. 线程控制 2.1. 创建线程 #include <pthread.h> int pthread_create(pthread_t *restrict thread, const pthread_attr_t *restrict attr, void *(*start_routine)(void*), void *restrict arg); 返回值:成功返回0,失败返回错误号。以前学过
第 35 章 线程 目录 1. 线程的概念 2. 线程控制 2.1. 创建线程 2.2. 终止线程 3. 线程间同步 3.1. mutex 3.2. Condition Variable 3.3. Semaphore 3.4. 其它线程间同步机制 4. 编程练习