Adam算法在RMSProp算法基础上对小批量随机梯度也做了指数加权移动平均 [1]。下面我们来介绍这个算法。 算法 Adam算法使用了动量变量$\boldsymbol{v}_t$和RMSProp算法中小批量随机梯度按元素平方的指数加权移动平均变量$\boldsymbol{s}_t$,并在时间步0将它们中每个元素初始化为0。给定超参数$0 \leq \beta_1 < 1$(算法作者建议设为0.9
除了RMSProp算法以外,另一个常用优化算法AdaDelta算法也针对AdaGrad算法在迭代后期可能较难找到有用解的问题做了改进 [1]。有意思的是,AdaDelta算法没有学习率这一超参数。 算法 AdaDelta算法也像RMSProp算法一样,使用了小批量随机梯度$\boldsymbol{g}_t$按元素平方的指数加权移动平均变量$\boldsymbol{s}_t$。在时间步0,它的所有元
我们在“AdaGrad算法”一节中提到,因为调整学习率时分母上的变量$\boldsymbol{s}_t$一直在累加按元素平方的小批量随机梯度,所以目标函数自变量每个元素的学习率在迭代过程中一直在降低(或不变)。因此,当学习率在迭代早期降得较快且当前解依然不佳时,AdaGrad算法在迭代后期由于学习率过小,可能较难找到一个有用的解。为了解决这一问题,RMSProp算法对AdaGrad算法做了一点小小
在之前介绍过的优化算法中,目标函数自变量的每一个元素在相同时间步都使用同一个学习率来自我迭代。举个例子,假设目标函数为$f$,自变量为一个二维向量$[x_1, x_2]^\top$,该向量中每一个元素在迭代时都使用相同的学习率。例如,在学习率为$\eta$的梯度下降中,元素$x_1$和$x_2$都使用相同的学习率$\eta$来自我迭代: $$x_1 \leftarrow x_1 - \eta \f
当你编写一个针对一类问题的通用解法,而非针对某一个问题的特定解法时,你就写出了一个算法。我在第一章提到过这个词,但是没有给出详细定义。这也不太好定义,所以我会试用多种方式进行定义。 首先,考虑一些不是算法的问题。当你学习个位数乘法时,你可能会背乘法表。实际上你记住的是100个特定解法,这种知识并不是真正意义的算法。 但是,如果你很“懒”,你可能学习一些作弊技巧。比如,求n与9的乘积,你可以在第一位
算法策略 分治法T(n)=O(nlogn) 将问题分解成规模较小、相互独立的子问题,各个击破,分而治之。 归并排序 将数列分为几个序列片段,逐趟两两归并,到底层归并成有序数列 最大子段和问题 动态规划法T(n)=O(nW) 将问题分解成互不独立子问题,保存子问题解,需要时再用,例如多项式时间算法 0/1背包问题 LCS最长公共子序列 贪心/贪婪法T(n)=O(n) 不从整体最优考虑,只根据当前信息
一、前言 上一章《Memcached源码分析 - Memcached源码分析之增删改查操作(5) 》中,我们讲到了SET命令的操作。当客户端向Memcached服务端SET一条缓存数据的时候,会将生成的Item地址挂到LRU的链表结构上。这一章节,我们主要讲一下Memcached是如何使用LRU算法的。 LRU:是Least Recently Used 近期最少使用算法。 二、Memcached的
名称 原理 复杂度 插入排序 对于元素索引i(i>=1),从头开始,若能找到比 a[i] 大对元素 a[j],则记录 a[i] 的值,将索引 j~i-1 的元素向后移动一位,使用 a[i] 替换 a[j]。优化思路:针对数组可以采用二分查找找到当前元素的插入位置,链表不需要位移操作。 O(n^2/2) 选择排序 从当前元素开始遍历,记录最小值的索引,根据索引交换当前值的最小值,选择排序每次选出最小
本文向大家介绍你有使用过JSX吗?说说你对JSX的理解相关面试题,主要包含被问及你有使用过JSX吗?说说你对JSX的理解时的应答技巧和注意事项,需要的朋友参考一下 刚好写了一篇文章:https://www.borgor.cn/2019-11-25/655734a7.html
本文向大家介绍请你谈谈,你是怎么准备这次面试的?相关面试题,主要包含被问及请你谈谈,你是怎么准备这次面试的?时的应答技巧和注意事项,需要的朋友参考一下
本文向大家介绍请你说一说你理解的虚函数和多态?相关面试题,主要包含被问及请你说一说你理解的虚函数和多态?时的应答技巧和注意事项,需要的朋友参考一下 多态的实现主要分为静态多态和动态多态,静态多态主要是重载,在编译的时候就已经确定;动态多态是用虚函数机制实现的,在运行期间动态绑定。举个例子:一个父类类型的指针指向一个子类对象时候,使用父类的指针去调用子类中重写了的父类中的虚函数的时候,会调用子类重写
本文向大家介绍深度学习常用方法?相关面试题,主要包含被问及深度学习常用方法?时的应答技巧和注意事项,需要的朋友参考一下 答:全连接DNN(相邻层互相连接,层内无连接) AutoEncoder(尽可能还原输入)、Sparse Coding(在AE上加入L1规范)、RBM(解决概率问题)---->>特征检测---->>栈式叠加贪心训练 RBM---->DBM 解决全连接DNN的全连接问题---->
本文向大家介绍Tensorflow Summary用法学习笔记,包括了Tensorflow Summary用法学习笔记的使用技巧和注意事项,需要的朋友参考一下 最近在研究tensorflow自带的例程speech_command,顺便学习tensorflow的一些基本用法。 其中tensorboard 作为一款可视化神器,可以说是学习tensorflow时模型训练以及参数可视化的法宝。 而在训练过
本文向大家介绍Python新手学习raise用法,包括了Python新手学习raise用法的使用技巧和注意事项,需要的朋友参考一下 当程序出现错误时,系统会自动引发异常。除此之外,Python 也允许程序自行引发异常,自行引发异常使用 raise 语句来完成。 很多时候,系统是否要引发异常,可能需要根据应用的业务需求来决定,如果程序中的数据、执行与既定的业务需求不符,这就是一种异常。由于与业务需求
1.统计学习 统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科,也称统计机器学习。统计学习是数据驱动的学科。统计学习是一门概率论、统计学、信息论、计算理论、最优化理论及计算机科学等多个领域的交叉学科。 统计学习的对象是数据,它从数据出发,提取数据的特征,抽象出数据的模型,发现数据中的知识,又回到对数据的分析与预测中去。统计学习关于数据的基本假设是同类数据具有一定