8.1号投递,base深圳 8.20一面 总共30分钟左右,没有撕算法题。 自我介绍 挑个项目讲解,讲一下流程和效果 讲一下研究方向 北京的岗位比深圳多,为什么选择深圳? 有没有女朋友? 未来的职业规划? 遇到的最大的挫折?从中学会了什么? 最有自豪感的事情? 有什么爱好特长? 反问1:部门规模?三四十人 反问2:业务内容?做视频内容安全相关的,偏策略多一些,中间处理 #2022秋招##快手面经#
在线测评是行测+性格测试,笔试找了半天发现才发现在战盟的这个位置进行笔试(要开摄像头) 浏览器、qq啥的全部要退出,战盟能检测,未退出无法开启笔试! 题目包括一些基础深度学习+机器学习知识,题型包括选择(单选)、填空、问答、编程题。 我报的算法,但是我没想到的居然有C++的题目(填空的C++居多),看不懂,不会orz...
10-8 面试官懂的太多了,秋招以来第一次面试被问麻了。 手撕 简单dp题,到右下角的最短路径 面试官说可以把边界条件拿出来做,这样会更清晰点 Pytorch DDP了解过吗 不了解 CV的发展路径 从AlexNet开始说,因为想不起来具体改进,就总结了说是各种架构和激活函数的改进 NLP的发展路径 RNN-》LSTM-》Transformer 不清楚是不是这个发展 RNN和Transformer
记录一下菜鸡被狂虐的经历吧 一面:研究院中的某个产品线 1.自我介绍 2.对哪个算法模型比较熟悉,介绍一下(说了xgboost) 3.xgboost与gbdt的区别 4.运用xgboost前是否需要进行归一化处理,xgboost中如何预防过拟合,如何在训练模型前预防过拟合 5.有没有用过深度学习模型,对哪些比较熟悉(我的方向是机器学习,就说了个cnn) 6.cnn各层的作用(属实是不记得了),为什
#小天才# 面试前通知时间大约半小时,实际面了将近一小时,但最后还是挂了。面试官比较侧重于问项目经历,而且表明我进面试是因为看重我的专业(通信本科+生物医学工程硕士)和某个项目经历比较对口,不过我在面试前准备的方向有点偏了,我当时提取准备的都是深度学习以及大模型方面的多模态知识,而小天才的多模态指的其实是智能穿戴设备上采集到的各种生理信号数据,主要结合的还是机器学习算法,这方面的提问我也没有很好答
快手机器学习算法工程师一面50min 人生中第一次找工作面试😭 (面试官姐姐人超好😭,一直心平气和的和聊天一样,我说错了也没说我而是跟我解答,甚至帮我找理由,全程都很耐心) 1.自我介绍 2.介绍用过哪些机器学习方法 3.SVM的原理跟优势 4.集成学习(扯了下随机森林跟集成学习原理),XGBOOST(没用过) 5.knn和kmeans做分类的原理 6.你们做的遥感图像怎么提取特征 7.问了下
游卡两次面试都很舒服,全程没有push,面试官人都很好,我觉得游卡是一个氛围很不错的 一面 30min 像是技术主管面 1、问项目 2、问之前的数据处理是怎么做的(一个时序数据) 3、问模型如何优化(答数据方面) 4、介绍了一下当前的业务,问我如何用神经网络处理(因为我没有接触过强化学习,所以让我用MLP解决,很贴心了) 问了不同情况如何处理,如欠拟合等 5、反问:我能不能接触到强化学习的内容,我
大概率挂了,问的问题不难但是我一个Python选手c++懂得确实不多,发个面经赞赞人品 1.拷打项目 因为项目里有提到ssd yolo和pointnet 就询问了怎么做的调整,使用过程中遇到了哪些问题,怎么解决的,然后问有没有了解过别的目标追踪网络,还有点云网络pointpillar (其实了解过,工业上用的比较多,但是一紧张忘记了) 2.八股 Python字典的key可以用哪些数据类型✓ 为什
岗位 视觉算法工程师 一面 针对项目进行提问,问的比较细,要对每一点说出为什么 深度学习算法相比于传统算法在去噪上有什么优势 了解傅里叶变换吗,蝶形计算快在哪里 了解量化吗 BN有什么用,为什么可以加速训练 label smooth为什么可以提高精度 介绍一下深度可分离卷积,深度可分离卷积和普通卷积的计算量对比 代码:应用题,二分查找的应用 #2023校招##计算机视觉算法工程师#
联想:2022 秋招 算法工程师 面试 一面 项目 是否了解 GDBT 等推荐算法 分类问题的交叉熵、是否可以用MSE 不可以。主要原因如下: 物理意义上,MSE 衡量的是几何空间的欧氏距离,而分类问题中每个类别的标签是离散的 和 ,本身不具备几何空间的意义; 信息学中,交叉熵衡量的是两个分布之间的差异,可用于衡量模型预测的概率分布和真实标签的类别分布是否相似。 计算上,分类模型输出的概率一般会经
中秋节前一天 一面(初试) 30分钟 没开摄像头,是在京东的会议平台上面的 深挖简历,主要问了项目与竞赛 八股文集中于大数据方面:spark与map reduce之间的差别、spark与flink区别、flink水位线等,有些问题不记得了,但基本都答上来了 没有手撕 反问:业务、匹配程度 ------------------------ 已挂 #京东##算法工程师#
岗位:人工智能类-算法工程师 HR一面 (9/8)- 15min 常规的HR面 自我介绍 选一个收获最大的项目进行介绍 沟通的能力 对海尔智家的理解 能否接受青岛 反问 技术二面 (9/15)- 15min 比约定时间晚了一些,可能是前面人面的时间超过15分钟了。 自我介绍 介绍项目(时间占比大) 平时所使用的语言,会不会c,c++ 接触过嵌入式开发吗 职业规划 反问 部门主要做嵌入式开发?(感觉
8.2 测评 8.26 一面 所有项目逐个介绍(细挖) ResNet中的BottleNeck结构 9.7 HR面 自我介绍 项目介绍 家庭情况 父母对自己工作的期望 研究所和企业工作的选择 职业规划 对象问题 读研期间导师对自己的影响 自己的性格介绍 自己的缺点 薪资意向 岗位的理解 反问 9.28 录用评估 #海康面试#
8.18 测评 9.6 一面 项目1介绍 逻辑回归简介 极大似然法简介 反问 KPI面...面完了面试官说他们是做加密的,不懂为什么让我面... #小米面试#
自我介绍 了解公司吗 项目相关 过拟合解决方法、有遇到过拟合吗?怎么解决 传统的图像特征提取方法有哪些 通道注意力和特征注意力 场景题: 如果知道1000个人上班是否会乘坐地铁?不可以直接去询问个人。给出具体的思考和结果得出过程。 反问 #面经一面面经##商米##图像算法##算法工程师#