美团算法一面面经(被捞) 1、面试官介绍自己和部门 2、自我介绍 3、问实习 4、问科研项目 5、传统的机器学习算法有无了解 6、决策树,评价指标有哪些 7、逻辑回归算法有无了解?逻辑回归的损失函数? 8、回归问题有无了解?回归问题采用的损失函数 9、有了解集成学习吗?都有哪些算法? 10、过拟合有了解吗?过拟合的解决方案。 10、算法题:求一个数组中前k大的数,要求时间复杂度O(logn) 11
美团算法二面面经 美团流程还挺快,一面后第二天就约了二面 1、面试官介绍 2、自我介绍 3、问实习经历 4、问项目经历 5、算法题:sql题:给一个评论表,有用户id,评论,时间,统计表 一个时间段内(具体时间不太记得了),累计评价数以及评价作者数(要去重)。(没写出来) 6、对互联网行业的看法(简单谈了下自己的看法) 7、对互联网算法工程师的认识(说了下算法工程师类型和分工) 8、喜欢当偏结合业
综述 “借问酒家何处有?牧童遥指杏花村。” 本文采用编译器:jupyter 线性模型试图学得一个通过属性的线性组合来进 预测的函数,即 线性模型形式简单、易于建模,但却蕴涵着机器学习中一些重要的基本思想。许多功能更为强大的非线性模型可在线性模型的基础上通过引入层级结构或高维映射而得。此外,由于 ω 直观表达了各属性在预测中的重要性,因此线性模型有很好的可解释性。 例如,我们要判断一个西瓜是好吃的
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。 示例: 输入: [-2,1,-3,4,-1,2,1,-5,4], 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。 进阶: 如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。 实现方案如下: /** * @param {number[]}
给定一个正整数 n,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。 示例: 输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ] 解法如下: /** * @param {number} n * @return {number[][]} */ var generateMatrix = f
给定两个以字符串形式表示的非负整数 num1 和 num2,返回 num1 和 num2 的乘积,它们的乘积也表示为字符串形式。 示例 1: 输入: num1 = "2", num2 = "3" 输出: "6" 示例 2: 输入: num1 = "123", num2 = "456" 输出: "56088" 说明: num1 和 num2 的长度小于110。 num1 和 num2 只包含数字 0
给定一个只包括 '(',')','{','}','[',']' 的字符串,判断字符串是否有效。 有效字符串需满足: 左括号必须用相同类型的右括号闭合。 左括号必须以正确的顺序闭合。 注意空字符串可被认为是有效字符串。 示例 1: 输入: "()" 输出: true 示例 2: 输入: "()[]{}" 输出: true 示例 3: 输入: "(]" 输出: false 示例 4: 输入: "([)
编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 char[] 的形式给出。 不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。 你可以假设数组中的所有字符都是 ASCII 码表中的可打印字符。 示例 1: 输入:["h","e","l","l","o"] 输出:["o","l","l","e","h"] 示例 2: 输入:["H",
之前小红书一志愿挂了今天再做次笔试,不知道能不能捞起来 第一题 对一个数组a可以进行两种操作:1. a[0]==0,删除a[0];2. a[0]!=0,a[0]减一并在数组a末尾添加a[0]个a[0]-1 求让输入的数组a变为空的操作数,答案模10^9+7 思路:对于a[0]==x,设消除它的操作次数为f(x),则f(x)=x+1+x*f(x-1)+...+1*f(0),求sum([f(x) fo
面试过程大概50多分钟,感觉比较凉的一面,拼多多11116工作强度。面试官周六还面试,看起来有点累的。 1、面试官首先介绍了自己的部门业务 2、做个自我介绍 3、让介绍项目,针对项目问了几个点 4、C++,数据结构是硕士阶段学的吗,机器学习什么时候学的(非科班感觉经常被问啊) 5、参加过什么社团 (技术面问这个是啥意思) 6、在班级里担任过什么职务 (问这个是为面试凑时间吗,) 7、说一下SVM算
没想到被抖音主站的视频推荐捞了,虽然早知道会被锤,但是没想到会被按在地上摩擦。[微笑R] 一面: 先是自我介绍 之后说我这个科研方向说的不对,说我都搞混淆了,咱就是说斯坦福写的综述就是这么写的,我只是个小follower[哭惹R] 然后问了点实习经历。 最后跟我说,做道题吧,考你一个简单的,等会我找找哈。 说来吧,做一道基础的。 我一看,力扣的困难题,OK 还好我做过,写上了。 然后没想到,面完俩
没想到被抖音主站的视频推荐捞了,虽然早知道会被锤,但是没想到会被按在地上摩擦。[微笑R] 一面: 先是自我介绍 之后说我这个科研方向说的不对,说我都搞混淆了,咱就是说斯坦福写的综述就是这么写的,我只是个小follower[哭惹R] 然后问了点实习经历。 最后跟我说,做道题吧,考你一个简单的,等会我找找哈。 说来吧,做一道基础的。 我一看,力扣的困难题,OK 还好我做过,写上了。 然后没想到,面完俩
1、自我介绍,完了之后面试官又介绍了他们在做的工作 2、问论文、项目内容 3、介绍transformer的结构;为什么要用多头;注意力有什么用等等 4、chatgpt了解吗,用过吗,聊了很多关于chatgpt这些大模型 5、写代码(给定两个字符串str1和str2,求字符串数组strs中str1和str2的最小距离) 6、反问:我问了去了以后做什么工作,偏项目还是科研#NLP#
1. 面试官先上来说这是算法岗,会问很多ml的知识(可能是我简历上的ml项目不够多参杂了一些java后端的项目,还是以后分成后端一个简历,算法岗一个简历吧) 2. 然后开始问就是关于项目的内容让我介绍了我的项目做了什么,输入是什么,神经网络怎么做的,用到的算法的一些特点。(我这部分答得很差) 3. 然后我自己提到了yolo,面试官问对于yolo有什么优化(并没有),然后问了loss具体的内容 4.
拜占庭问题与算法 拜占庭问题更为广泛,讨论的是允许存在少数节点作恶(消息可能被伪造)场景下的一致性达成问题。拜占庭算法讨论的是最坏情况下的保障。 中国将军问题 拜占庭将军问题之前,就已经存在中国将军问题:两个将军要通过信使来达成进攻还是撤退的约定,但信使可能迷路或被敌军阻拦(消息丢失或伪造),如何达成一致。根据 FLP 不可能原理,这个问题无解。 拜占庭问题 又叫拜占庭将军(Byzantine G