主要内容:选择排序算法的具体实现对数据量较少的序列实现升序或降序排序,可以考虑使用 选择排序算法,它对应的时间复杂度为 。 排序排序算法对含有 n 个元素的序列实现排序的思路是:每次从待排序序列中找出最大值或最小值,查找过程重复 n-1 次。对于每次找到的最大值或最小值,通过交换元素位置的方式将它们放置到适当的位置,最终使整个序列变成有序序列。 举个例子,我们使用选择排序算法对 {14, 33, 27, 10, 35, 19,
主要内容:插入排序算法的具体实现插入排序算法可以对指定序列完成升序(从小到大)或者降序(从大到小)排序,对应的时间复杂度为 。 插入排序算法的实现思路是:初始状态下,将待排序序列中的第一个元素看作是有序的子序列。从第二个元素开始,在不破坏子序列有序的前提下,将后续的每个元素插入到子序列中的适当位置。 举个简单的例子,用插入排序算法对 {14, 33, 27, 10, 35, 19, 42, 44} 实现升序排序的过程如下: 1)
主要内容:冒泡排序算法的具体实现冒泡排序是所有排序算法中最简单、最易实现的算法,有时也称为起泡排序算法。 使用冒泡排序算法对 n 个数据进行排序,实现思路是:从待排序序列中找出一个最大值或最小值,这样的操作执行 n-1 次,最终就可以得到一个有序序列。 举个例子,对 {14, 33, 27, 35, 10} 序列进行升序排序(由小到大排序),冒泡排序算法的实现过程是: 从 {14, 33, 27, 35, 10} 中找到最大值
主要内容:动态规划算法的实际应用动态规划算法解决问题的过程和分治算法类似,也是先将问题拆分成多个简单的小问题,通过逐一解决这些小问题找到整个问题的答案。不同之处在于,分治算法拆分出的小问题之间是相互独立的,而动态规划算法拆分出的小问题之间相互关联,例如要想解决问题 A,必须先解决问题 B 和 C。 《贪心算法》一节中,给大家举过一个例子,假设有 1、7、10 这 3 种面值的纸币,每种纸币使用的数量不限,要求用尽可能少的纸币拼凑
主要内容:顺序查找的实现,顺序查找的性能分析,总结通过前面对静态 查找表的介绍,静态查找表即为只做查找操作的查找表。 静态查找表既可以使用顺序表表示,也可以使用链表结构表示。虽然一个是数组、一个链表,但两者在做查找操作时,基本上大同小异。 本节以静态查找表的顺序存储结构为例做详细的介绍。 顺序查找的实现 静态查找表用顺序存储结构表示时,顺序查找的查找过程为:从表中的最后一个数据元素开始,逐个同记录的关键字做比较,如果匹配成功,则查找成功;反之,如
我使用photoshop创建了一组瓷砖: 我正在寻找一种方法来填充这些80x80瓷砖的屏幕,其中大多数区域是相连的。这是一个吃豆人风格游戏的游戏板,而不是一个有入口和出口的迷宫。 我唯一的目标是永远不要有一个面向墙壁的开口。 我目前通过从基于上一个瓷砖的子集中随机选择下一个瓷砖来实现这一点,因此如果最后一个瓷砖左侧有墙,那么下一个砖就不能左侧有开口。我还将拐角限制为较小的子集。这只适用于第一行。
我的问题是,是否有一种方法可以在不通过堆栈的情况下完成所有这些操作。x86_64是否有将xmm0的内容复制到eax或其他通用寄存器的内插? 编辑:问题本身在讨论过程中发生了变化。最后有两个备注,在这两个备注中,我都引用了Intel C++复杂参考的相应部分。 > 可以使用intrinsics在通用Regiter和XMM寄存器之间移动数据(“Steaming SIMD Extensions->流式S
我希望使用log4j2 RollingFileAppender和定制的压缩算法(ZStd)。 目前为止支持的压缩算法似乎是FileExtension枚举(zip,gz,bz2,...)中的压缩算法,请参见https://github.com/apache/logging-log4j2/blob/efa64bfad3f67c5b5fed6b25d65ef5ca2212011b/log4j-core/
最后,让我们看看 Dijkstra 算法的运行时间。我们首先注意到,构建优先级队列需要 $$O(V)$$ 时间,因为我们最初将图中的每个顶点添加到优先级队列。 一旦构造了队列,则对于每个顶点执行一次 while 循环,因为顶点都在开始处添加,并且在那之后才被移除。 在该循环中每次调用 delMin,需要 $$O(logV)$$时间。 将该部分循环和对 delMin 的调用取为 $$O(Vlog(V
基本排序算法
import scala.language.postfixOps import scala.reflect.ClassTag import org.apache.spark.graphx._ import org.apache.spark.internal.Logging /** * PageRank algorithm implementation. There are two impleme
本文会介绍一般的k-means算法、k-means++算法以及基于k-means++算法的k-means||算法。在spark ml,已经实现了k-means算法以及k-means||算法。 本文首先会介绍这三个算法的原理,然后在了解原理的基础上分析spark中的实现代码。 1 k-means算法原理分析 k-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据它们的属性分为k
栈 1. 数组实现 2. 链表实现 队列 栈 // java public interface MyStack extends Iterable { MyStack push(Item item); Item pop() throws Exception; boolean isEmpty(); int size(); } 1. 数组实现 // java
问题内容: 我正在寻找带有示例的k-means算法的Python实现来聚类和缓存我的坐标数据库。 问题答案: 更新:( 在最初回答之后十一年,可能是该进行更新的时候了。) 首先,您确定要使用k均值吗? 该页面很好地总结了一些不同的聚类算法。我建议您在图形之外,特别查看每种方法所需的参数,并确定您是否可以提供所需的参数(例如,k均值需要簇的数量,但是也许您不知道在开始之前就知道了)群集)。 以下是一
问题内容: 我正在尝试查找可用于加密功能的列表,以替换该功能。 我了解到crypto使用,并且算法特定于每个运行node.js的系统。 使用以下命令,您可以查看系统可用的所有算法的列表。 我已经将这两个命令的内容输出到了要点。 令我困扰的是,这两个列表均未列出。 我真的很想要权威的算法列表。 问题答案: 这里的学习是和不同并且使用不同的算法。使用node的use 和method分别返回具有受支持的