我有两种不同的方法,一种是用迭代法计算第n个元素的斐波那契序列,另一种是用递归法。
程序示例如下所示:
import java.util.Scanner;
public class recursionVsIteration {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
//nth element input
System.out.print("Enter the last element of Fibonacci sequence: ");
int n = sc.nextInt();
//Print out iteration method
System.out.println("Fibonacci iteration:");
long start = System.currentTimeMillis();
System.out.printf("Fibonacci sequence(element at index %d) = %d \n", n, fibIteration(n));
System.out.printf("Time: %d ms\n", System.currentTimeMillis() - start);
//Print out recursive method
System.out.println("Fibonacci recursion:");
start = System.currentTimeMillis();
System.out.printf("Fibonacci sequence(element at index %d) = %d \n", n, fibRecursion(n));
System.out.printf("Time: %d ms\n", System.currentTimeMillis() - start);
}
//Iteration method
static int fibIteration(int n) {
int x = 0, y = 1, z = 1;
for (int i = 0; i < n; i++) {
x = y;
y = z;
z = x + y;
}
return x;
}
//Recursive method
static int fibRecursion(int n) {
if ((n == 1) || (n == 0)) {
return n;
}
return fibRecursion(n - 1) + fibRecursion(n - 2);
}
}
我试图找出哪种方法更快。我得出的结论是,对于较小数量的数字,递归速度更快,但随着第n个元素的值增加,递归速度变慢,迭代速度变快。以下是三个不同n的三个不同结果:
示例#1(n=10)
Enter the last element of Fibonacci sequence: 10
Fibonacci iteration:
Fibonacci sequence(element at index 10) = 55
Time: 5 ms
Fibonacci recursion:
Fibonacci sequence(element at index 10) = 55
Time: 0 ms
示例#2(n=20)
Enter the last element of Fibonacci sequence: 20
Fibonacci iteration:
Fibonacci sequence(element at index 20) = 6765
Time: 4 ms
Fibonacci recursion:
Fibonacci sequence(element at index 20) = 6765
Time: 2 ms
示例#3(n=30)
Enter the last element of Fibonacci sequence: 30
Fibonacci iteration:
Fibonacci sequence(element at index 30) = 832040
Time: 4 ms
Fibonacci recursion:
Fibonacci sequence(element at index 30) = 832040
Time: 15 ms
我真正想知道的是,为什么迭代突然变得更快,递归变得更慢。如果我错过了这个问题的一些显而易见的答案,我很抱歉,但我对编程还是新手,我真的不明白这背后发生了什么,我很想知道。请给我一个很好的解释或者给我指出正确的方向,这样我就能自己找到答案。此外,如果这不是测试哪种方法更快的好方法,请让我知道并建议我不同的方法。
提前感谢!
在执行斐波那契算法的递归实现时,通过反复重新计算相同的值来添加冗余调用。
fib(5) = fib(4) + fib(3)
fib(4) = fib(3) + fib(2)
fib(3) = fib(2) + fib(1)
请注意,fib(2)
对于fib(4)
和fib(3)
都将进行冗余计算。然而,这可以通过一种称为记忆的技术来克服,该技术通过存储已经计算过一次的值来提高递归斐波那契的效率。对于已知值的进一步调用fib(x)可以用简单的查找来代替,从而消除了进一步递归调用的需要。
这是迭代和递归方法之间的主要区别,如果你感兴趣,还有其他更有效的斐波那契数计算算法。
为了简洁起见,设F(x)为递归斐波那契
F(10) = F(9) + F(8)
F(10) = F(8) + F(7) + F(7) + F(6)
F(10) = F(7) + F(6) + F(6) + F(5) + 4 more calls.
....
所以你要打F(8)两次,F(7)3次,F(6)5次,F(5)7次。。等等
因此,随着投入的增加,树变得越来越大。
问题内容: 请解释以下简单代码: 我对最后一行感到困惑,特别是因为例如,如果n = 5,则将调用fibonacci(4)+ fibonacci(3),依此类推,但我不理解该算法如何以此来计算索引5的值方法。请详细解释! 问题答案: 在斐波那契数列中,每一项都是前两项的总和。因此,你编写了一个递归算法。 所以, 现在你已经知道了。因此,你可以随后计算其他值。 现在, 从斐波那契数列中我们可以看到斐波
我试图想出一个程序,从用户那里获取任何数字,并生成斐波那契码的第n个数字。当我完成工作时,它会显示下一个,而不是我需要的。例如,我正在寻找第11个#和它的生产233而不是144。这是我的代码:
问题内容: 我在大学为我的Programming II类编写的程序需要一些帮助。这个问题要求人们使用递归来计算斐波那契数列。必须将计算出的斐波那契数存储在一个数组中,以停止不必要的重复计算并减少计算时间。 我设法使程序在没有数组和存储的情况下运行,现在我试图实现该功能,但遇到了麻烦。我不确定如何组织它。我已经浏览了Google并浏览了一些书,但没有太多帮助我解决如何实施解决方案的方法。 上面是不正
本文向大家介绍JAVA递归与非递归实现斐波那契数列,包括了JAVA递归与非递归实现斐波那契数列的使用技巧和注意事项,需要的朋友参考一下 斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci[1] )以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、…
本文向大家介绍Java递归实现斐波那契数列,包括了Java递归实现斐波那契数列的使用技巧和注意事项,需要的朋友参考一下 程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所
Python3 实例 以下代码使用递归的方式来生成斐波那契数列: 实例(Python 3.0+)# Filename : test.py # author by : www.runoob.com def recur_fibo(n): """递归函数 输出斐波那契数列""" if n <= 1: return n else: return(recur_fibo(n-1) + recur_fibo(n