我正在使用TensorFlow的量化感知训练API,并希望部署一个具有任意比特宽度的模型。由于tflite部署仅支持8位量化,因此我将使用自定义推理算法进行部署,但我仍然需要访问正确大小的模型权重。
目前,在使用量化感知训练后,我的模型仍然处于浮点状态,据我所知,访问量化权重的唯一方法是将模型转换为tflite格式。然而,在使用实验函数时,这是不可能的。
这是我的量化配置类:
class Quantizer(tfmot.quantization.keras.QuantizeConfig):
# Configure how to quantize weights.
def get_weights_and_quantizers(self, layer):
return [(layer.kernel, tfmot.quantization.keras.quantizers.LastValueQuantizer(num_bits=8, symmetric=True, narrow_range=False, per_axis=False))]
# Configure how to quantize activations.
def get_activations_and_quantizers(self, layer):
return [(layer.activation, tfmot.quantization.keras.quantizers.MovingAverageQuantizer(num_bits=8, symmetric=False, narrow_range=False, per_axis=False))]
def set_quantize_weights(self, layer, quantize_weights):
# Add this line for each item returned in `get_weights_and_quantizers`
# , in the same order
layer.kernel = quantize_weights[0]
def set_quantize_activations(self, layer, quantize_activations):
# Add this line for each item returned in `get_activations_and_quantizers`
# , in the same order.
layer.activation = quantize_activations[0]
# Configure how to quantize outputs (may be equivalent to activations).
def get_output_quantizers(self, layer):
return []
def get_config(self):
return {}
class ModifiedQuantizer(Quantizer):
# Configure weights to quantize with 4-bit instead of 8-bits.
def get_weights_and_quantizers(self, layer):
return [(layer.kernel, quantizer(num_bits=bits, symmetric=symmetric, narrow_range=narrow_range, per_axis=per_axis))]
下面是我如何量化模型的:
supported_layers = [
tf.keras.layers.Conv2D,
tf.keras.layers.DepthwiseConv2D
]
class Quantizer(tfmot.quantization.keras.QuantizeConfig):
# Configure how to quantize weights.
def get_weights_and_quantizers(self, layer):
return [(layer.kernel, tfmot.quantization.keras.quantizers.LastValueQuantizer(num_bits=8, symmetric=True, narrow_range=False, per_axis=False))]
# Configure how to quantize activations.
def get_activations_and_quantizers(self, layer):
return [(layer.activation, tfmot.quantization.keras.quantizers.MovingAverageQuantizer(num_bits=8, symmetric=False, narrow_range=False, per_axis=False))]
def set_quantize_weights(self, layer, quantize_weights):
# Add this line for each item returned in `get_weights_and_quantizers`
# , in the same order
layer.kernel = quantize_weights[0]
def set_quantize_activations(self, layer, quantize_activations):
# Add this line for each item returned in `get_activations_and_quantizers`
# , in the same order.
layer.activation = quantize_activations[0]
# Configure how to quantize outputs (may be equivalent to activations).
def get_output_quantizers(self, layer):
return []
def get_config(self):
return {}
class ModifiedQuantizer(Quantizer):
# Configure weights to quantize with 4-bit instead of 8-bits.
def get_weights_and_quantizers(self, layer):
return [(layer.kernel, quantizer(num_bits=bits, symmetric=symmetric, narrow_range=narrow_range, per_axis=per_axis))]
# Configure how to quantize activations.
def get_activations_and_quantizers(self, layer):
return [(layer.activation, tfmot.quantization.keras.quantizers.MovingAverageQuantizer(num_bits=bits, symmetric=False, narrow_range=False, per_axis=False))]
def quantize_all_layers(layer):
for supported_layer in supported_layers:
if isinstance(layer, supported_layer):
return quantize_annotate_layer(layer, quantize_config=ModifiedQuantizer())
# print(layer.name)
return layer
annotated_model = clone_model(
model,
clone_function=quantize_all_layers
)
with quantize_scope(
{'Quantizer': Quantizer},
{'ModifiedQuantizer': ModifiedQuantizer},
{'_relu6': models._relu6}):
q_aware_model = quantize_apply(annotated_model)
optimizer = keras.optimizers.Adam(
learning_rate=0.001)
q_aware_model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True),
optimizer=optimizer, metrics=['sparse_categorical_accuracy'])
train_images, train_labels, val_images, val_labels, _, _ = cifar10.load()
q_aware_model.fit(train_images, train_labels, batch_size=64, epochs=1, verbose=1,
validation_data=(val_images, val_labels))
如前所述,当使用例如位=4的修改量化器时,模型仍然保存在浮点中,并且不知道如何访问量化权重。
谢谢!
我怀疑您可以通过调用LastValueQuantizer来获得量化权重__对给定层的权重张量调用_u
。问题是如何调用该方法。
当前签名为:
LastValueQuantizer.__call__(inputs, training, weights, **kwargs)
我假设inputs
是层的权重,weights
是LastValueQuantizer返回的值。构建
。如果您可以获得由build
返回的weights
的引用,我希望可以直接使用LastValueQuantizer对层的权重进行量化__调用
。
[nav] In [1]: from tensorflow_model_optimization.quantization.keras.quantizers import LastValueQuantizer
INFO:tensorflow:Enabling eager execution
INFO:tensorflow:Enabling v2 tensorshape
INFO:tensorflow:Enabling resource variables
INFO:tensorflow:Enabling tensor equality
INFO:tensorflow:Enabling control flow v2
[nav] In [2]: q = LastValueQuantizer(num_bits=3, per_axis=True, symmetric=True, narrow_range=True)
[ins] In [3]: ??q.__call__
Signature: q.__call__(inputs, training, weights, **kwargs)
Source:
def __call__(self, inputs, training, weights, **kwargs):
"""Quantize tensor.
Args:
inputs: Input tensor to be quantized.
training: Whether the graph is currently training.
weights: Dictionary of weights the quantizer can use to quantize the
tensor. This contains the weights created in the `build` function.
**kwargs: Additional variables which may be passed to the quantizer.
Returns:
Quantized tensor.
"""
return quant_ops.LastValueQuantize(
inputs,
weights['min_var'],
weights['max_var'],
is_training=training,
num_bits=self.num_bits,
per_channel=self.per_axis,
symmetric=self.symmetric,
narrow_range=self.narrow_range
)
我有一个包含Conv2D层的网络,然后是ReLU激活,声明如下: 它被移植到TFLite,具有以下代表性: 无Q感知训练的基本TFLite网络 然而,在网络上执行量化感知训练并再次移植后,ReLU层现在在图中是明确的: TFLite网络在Q感知训练后 这导致它们在目标上被单独处理,而不是在Conv2D内核的评估期间,在我的整个网络中导致10%的性能损失。 使用以下隐式语法声明激活不会产生问题: 具
本文向大家介绍TensorFlow实现随机训练和批量训练的方法,包括了TensorFlow实现随机训练和批量训练的方法的使用技巧和注意事项,需要的朋友参考一下 TensorFlow更新模型变量。它能一次操作一个数据点,也可以一次操作大量数据。一个训练例子上的操作可能导致比较“古怪”的学习过程,但使用大批量的训练会造成计算成本昂贵。到底选用哪种训练类型对机器学习算法的收敛非常关键。 为了Tensor
我目前正在使用TensorFlow Lite,我试图理解动态范围量化(DRQ)和全整数量化(FIQ)之间的区别。我知道在第一个(DRQ)中,只有权重是量化的,而在第二个(FIQ)中,权重和激活(输出)都是量化的。 然而,我不确定我是否完全理解这意味着什么。关于权重的量化,它们只是从float32转换到int8,还是进行另一种操作?同样,为什么需要一个有代表性的数据集来量化FIQ中的激活? 此外,我
本文向大家介绍tensorflow 初始化未初始化的变量实例,包括了tensorflow 初始化未初始化的变量实例的使用技巧和注意事项,需要的朋友参考一下 今日在Stack Overflow上看到一个问如何只初始化未初始化的变量,有人提供了一个函数,特地粘贴过来共大家品鉴: 通过tf.global_variables()返回一个全局变量的列表global_vars, 然后以python列表解析式的
最近,我读了很多关于keras批处理规范化的文章,讨论了很多。 根据该网站:设置“tf.layers.batch\u normalization”中的“training=False”,这样训练将获得更好的验证结果 答案是: 如果使用training=True启用批次标准化,则将开始标准化批次本身,并收集每个批次的平均值和方差的移动平均值。现在是棘手的部分。移动平均值是指数移动平均值,tf的默认动量
在TensorFlow中执行批量规格化的正确方法是什么?(即,我不想计算连续均值和方差)。我当前的实现基于tf。nn。batch\u normalization(批次规格化),其中x是具有形状的卷积层的输出。[批次大小、宽度、高度、通道数]。我想在通道方面执行批处理规范。 但这种实施的结果非常糟糕。与tensorflow比较。承包商。苗条的batch\u norm显示其票价较低(同样糟糕的培训表现