TensorFlow更新模型变量。它能一次操作一个数据点,也可以一次操作大量数据。一个训练例子上的操作可能导致比较“古怪”的学习过程,但使用大批量的训练会造成计算成本昂贵。到底选用哪种训练类型对机器学习算法的收敛非常关键。
为了TensorFlow计算变量梯度来让反向传播工作,我们必须度量一个或者多个样本的损失。
随机训练会一次随机抽样训练数据和目标数据对完成训练。另外一个可选项是,一次大批量训练取平均损失来进行梯度计算,批量训练大小可以一次上扩到整个数据集。这里将显示如何扩展前面的回归算法的例子——使用随机训练和批量训练。
批量训练和随机训练的不同之处在于它们的优化器方法和收敛。
# 随机训练和批量训练 #---------------------------------- # # This python function illustrates two different training methods: # batch and stochastic training. For each model, we will use # a regression model that predicts one model variable. import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from tensorflow.python.framework import ops ops.reset_default_graph() # 随机训练: # Create graph sess = tf.Session() # 声明数据 x_vals = np.random.normal(1, 0.1, 100) y_vals = np.repeat(10., 100) x_data = tf.placeholder(shape=[1], dtype=tf.float32) y_target = tf.placeholder(shape=[1], dtype=tf.float32) # 声明变量 (one model parameter = A) A = tf.Variable(tf.random_normal(shape=[1])) # 增加操作到图 my_output = tf.multiply(x_data, A) # 增加L2损失函数 loss = tf.square(my_output - y_target) # 初始化变量 init = tf.global_variables_initializer() sess.run(init) # 声明优化器 my_opt = tf.train.GradientDescentOptimizer(0.02) train_step = my_opt.minimize(loss) loss_stochastic = [] # 运行迭代 for i in range(100): rand_index = np.random.choice(100) rand_x = [x_vals[rand_index]] rand_y = [y_vals[rand_index]] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%5==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A))) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) print('Loss = ' + str(temp_loss)) loss_stochastic.append(temp_loss) # 批量训练: # 重置计算图 ops.reset_default_graph() sess = tf.Session() # 声明批量大小 # 批量大小是指通过计算图一次传入多少训练数据 batch_size = 20 # 声明模型的数据、占位符 x_vals = np.random.normal(1, 0.1, 100) y_vals = np.repeat(10., 100) x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32) y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32) # 声明变量 (one model parameter = A) A = tf.Variable(tf.random_normal(shape=[1,1])) # 增加矩阵乘法操作(矩阵乘法不满足交换律) my_output = tf.matmul(x_data, A) # 增加损失函数 # 批量训练时损失函数是每个数据点L2损失的平均值 loss = tf.reduce_mean(tf.square(my_output - y_target)) # 初始化变量 init = tf.global_variables_initializer() sess.run(init) # 声明优化器 my_opt = tf.train.GradientDescentOptimizer(0.02) train_step = my_opt.minimize(loss) loss_batch = [] # 运行迭代 for i in range(100): rand_index = np.random.choice(100, size=batch_size) rand_x = np.transpose([x_vals[rand_index]]) rand_y = np.transpose([y_vals[rand_index]]) sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%5==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A))) temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y}) print('Loss = ' + str(temp_loss)) loss_batch.append(temp_loss) plt.plot(range(0, 100, 5), loss_stochastic, 'b-', label='Stochastic Loss') plt.plot(range(0, 100, 5), loss_batch, 'r--', label='Batch Loss, size=20') plt.legend(loc='upper right', prop={'size': 11}) plt.show()
输出:
Step #5 A = [ 1.47604525]
Loss = [ 72.55678558]
Step #10 A = [ 3.01128507]
Loss = [ 48.22986221]
Step #15 A = [ 4.27042341]
Loss = [ 28.97912598]
Step #20 A = [ 5.2984333]
Loss = [ 16.44779968]
Step #25 A = [ 6.17473984]
Loss = [ 16.373312]
Step #30 A = [ 6.89866304]
Loss = [ 11.71054649]
Step #35 A = [ 7.39849901]
Loss = [ 6.42773056]
Step #40 A = [ 7.84618378]
Loss = [ 5.92940331]
Step #45 A = [ 8.15709782]
Loss = [ 0.2142024]
Step #50 A = [ 8.54818344]
Loss = [ 7.11651039]
Step #55 A = [ 8.82354641]
Loss = [ 1.47823763]
Step #60 A = [ 9.07896614]
Loss = [ 3.08244276]
Step #65 A = [ 9.24868107]
Loss = [ 0.01143846]
Step #70 A = [ 9.36772251]
Loss = [ 2.10078788]
Step #75 A = [ 9.49171734]
Loss = [ 3.90913701]
Step #80 A = [ 9.6622715]
Loss = [ 4.80727625]
Step #85 A = [ 9.73786926]
Loss = [ 0.39915398]
Step #90 A = [ 9.81853104]
Loss = [ 0.14876099]
Step #95 A = [ 9.90371323]
Loss = [ 0.01657014]
Step #100 A = [ 9.86669159]
Loss = [ 0.444787]
Step #5 A = [[ 2.34371352]]
Loss = 58.766
Step #10 A = [[ 3.74766445]]
Loss = 38.4875
Step #15 A = [[ 4.88928795]]
Loss = 27.5632
Step #20 A = [[ 5.82038736]]
Loss = 17.9523
Step #25 A = [[ 6.58999157]]
Loss = 13.3245
Step #30 A = [[ 7.20851326]]
Loss = 8.68099
Step #35 A = [[ 7.71694899]]
Loss = 4.60659
Step #40 A = [[ 8.1296711]]
Loss = 4.70107
Step #45 A = [[ 8.47107315]]
Loss = 3.28318
Step #50 A = [[ 8.74283409]]
Loss = 1.99057
Step #55 A = [[ 8.98811722]]
Loss = 2.66906
Step #60 A = [[ 9.18062305]]
Loss = 3.26207
Step #65 A = [[ 9.31655025]]
Loss = 2.55459
Step #70 A = [[ 9.43130589]]
Loss = 1.95839
Step #75 A = [[ 9.55670166]]
Loss = 1.46504
Step #80 A = [[ 9.6354847]]
Loss = 1.49021
Step #85 A = [[ 9.73470974]]
Loss = 1.53289
Step #90 A = [[ 9.77956581]]
Loss = 1.52173
Step #95 A = [[ 9.83666706]]
Loss = 0.819207
Step #100 A = [[ 9.85569191]]
Loss = 1.2197
训练类型 | 优点 | 缺点 |
---|---|---|
随机训练 | 脱离局部最小 | 一般需更多次迭代才收敛 |
批量训练 | 快速得到最小损失 | 耗费更多计算资源 |
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍tensorflow 固定部分参数训练,只训练部分参数的实例,包括了tensorflow 固定部分参数训练,只训练部分参数的实例的使用技巧和注意事项,需要的朋友参考一下 在使用tensorflow来训练一个模型的时候,有时候需要依靠验证集来判断模型是否已经过拟合,是否需要停止训练。 1.首先想到的是用tf.placeholder()载入不同的数据来进行计算,比如 这种方式很简单,也很
利用 Polar 应用程式、Polar Flow 应用程式以及 Polar Flow 网络服务获得有关您的训练的即时分析,深入了解您的训练。 M600 上的训练总结 在每次训练后,您将在您的手表上收到您的即时训练总结。 总结中显示的信息取决于运动内容。可提供的细节包括: 时间长度:训练时长 距离(如适用于您的运动):指训练中已完成的距离。 平均心率:指训练期间您的平均心率。 最大心率:指训练期间您
训练视图 浏览训练视图 上下滑动屏幕。 或 将手腕向内再向外轻快移动。 观看如何在训练期间使用 Polar 应用程式的相关视频教程。 您在训练视图上看到的信息取决于您对所选的运动内容的编辑。您可以在 Polar Flow 应用程式或 Polar Flow 网络服务中对每项运动内容进行设置。 例如,训练视图可提供以下信息: 您的当前心率 心率 ZonePointer 训练时长 训练期间到目前为止完成
尝试一周,能改变一些旧习 一个一个练,反复的使用即可 不求多,以下练熟悉即可 practice makes prefect~ 放弃鼠标 全键盘和触摸板,你可以么? 从熟悉快捷键开始 全屏 专心写代码,减少干扰 ctrl + command + f 放大到全屏 设置Workbench主菜单快捷键,快速切换 设置Workbench主菜单快捷键,然后就有了command + 1到4的快捷键,快速切换,效
您可以在 Polar Flow 网络服务或 Polar Flow 应用程式中规划您的训练并创建个人训练目标。 使用季度规划工具,创建训练计划 Flow 网络服务中的 Season Planner (季度规划工具)是度身打造年度训练计划的理想工具。无论训练目标如何,Polar Flow 都可以帮助您创建达成的综合计划。您可以在 Polar Flow 网络服务中的程序选项卡中找到季度规划工具。 Pol
训练效益为您提供每次训练效果的文字反馈信息,帮您更好地了解训练的有效性。您可以在 Flow 应用程式与 Flow 网络服务上查看反馈信息。要获得反馈信息,您需要在心率区中一共至少训练 10 分钟。 训练效益反馈信息是基于心率区。它反映了您在每个心率区花费的时间与消耗的卡路里数。 下表列出了不同训练效益选项的描述。 评估信息 效益 Maximum training+(最强训练+) 非常棒的训练!您的