当前位置: 首页 > 知识库问答 >
问题:

求加权有向图中权值最低路径权值的算法

公冶麒
2023-03-14

给我一个图中名为“a”的顶点,对于v中的每一个v,我需要找到从a到v的路径的权重,它在时间O(v+E)中权重最低。我不得不只使用BFS或DFS(尽管这很可能是BFS的问题)。

我想过要制作一个新的图,其中边为0的顶点是统一的,然后在它上面运行BFS,但是这会破坏图的方向(如果图是无向的或者权重是{2,1},对于边为2,我会创建一个新的顶点)。

如果有任何帮助,我将不胜感激。

谢谢

共有1个答案

华振
2023-03-14

我认为可以用DFS和BFS的组合来完成。

在原始的BFS中,对于一个未赋权图,我们有一个不变量,即未被探索的结点的距离大于或等于被探索的结点的距离。

在我们的BFS中,对于每个节点,我们首先通过所有的0加权边做DFS,标记下距离,并标记为已探索。然后我们可以继续我们的BFS中的其他节点。

Array Seen[] = false
Empty queue Q
E' = {(a, b) | (a, b) = 0 and (a, b) is of E}

DFS(V, E', u)
    for each v is adjacent to u in E' // (u, v) has an edge weighted 0
        if Seen[v] = false
            v.dist = u.dist
            DFS(V, E', v)
    Seen[u] = true
    Enqueue(Q, u)

BFS(V, E, source)
    Enqueue(Q, source)
    source.dist = 0
    DFS(V, E', source)
    while (Q is not empty)
        u = Dequeue(Q)
        for each v is adjacent to u in E
            if Seen[v] = false
                v.dist = u.dist + 1
                Enqueue(Q, v)
        Seen[u] = true
 类似资料:
  • 我们知道在两个顶点之间寻找一条最大权重路径是NP难的。但是如果我们限制边缘权重,对于例如。所有边权值都小于某个特定值x。我清楚地定义下面的问题。 我有一个有向图G(V,E),其中每条边的权值在1到V之间。我想在两个顶点u和V之间找到最大权值路径。

  • 在一个加权有向图中,我需要找到两个结点s,t之间的最短路径。以下是限制: 权重可以为负值。 路径必须经过一个特定的边,让我们从节点u到V调用her e和shes。 输出路径必须简单,即我们只通过一个节点一次。 因为我希望它最短,所以我将检查在从s到u之前从v到t运行bellman ford是否比相反的方式更快(如果有节点,两个节点都使用where是放置它的最佳位置)。 谢谢你的帮助!

  • 我有一个有向图,边上的权值是非负的。 我的算法应该做到以下几点: 获取从顶点u到顶点V的所有路径 计算从u到v的每条路径上的最小加权边 计算我从上面计算的最小加权边的最大值。

  • 我试图将这个问题概念化,然后为它编写Java代码。我知道这里有一些讨论,但我没有看到很多回答者,所以我想通过写下我的想法来重申这个问题,我希望从你们那里得到一些反馈。谢谢 我的想法:对于每个叶节点,找到从根节点到它的最长路径。对于所有路径,找到最大路径长度 然而,这不就是蛮力吗,对此还有更优雅的解决方案吗? 我听说过使用Djikstra的负权重算法,但在某些地方它说这只适用于特定情况?我也看到了关

  • 我遇到了一个问题,我必须找出给定图形中的最长路径。我有一个边列表(例如,{AB,BC}),它表明在顶点/节点(A,B,C)之间有一条边。现在我想计算出可能的最长路径(不重复顶点),这样它可以覆盖从任何顶点/节点开始的最大节点。 解决这个问题的最佳方法是什么?我必须把它作为一个计划来实施。 我在谷歌上查找最小生成树、Dijkstra的算法等等。但我想不出什么最适合解决这个问题。 任何帮助或阅读参考资

  • 你有一辆2005年本田雅阁,油箱里还剩50英里(最大重量)。在50英里半径范围内,你可以访问哪些麦当劳的位置(图节点)?这是我的问题。 如果你有一个加权有向无环图,你如何找到在给定的权限制内可以访问的所有节点? 我知道Dijkstra的算法,但我似乎找不到任何关于它在最小路径问题之外的用途的文档。在我的例子中,我们没有特别想结束的节点,我们只想在不超过最大权重的情况下尽可能多地结束。似乎您应该能够