我想使用scipy计算矩阵的数学等级。最明显的函数是numpy.rank
计算数组的维数(即标量的维数为0,矢量为1,矩阵为2等)。我知道该numpy.linalg.lstsq
模块具有此功能,但是我想知道这样的基本操作是否内置在某个矩阵类中。
这是一个明确的示例:
from numpy import matrix, rank
A = matrix([[1,3,7],[2,8,3],[7,8,1]])
print rank(A)
这给出2
了维度,我正在寻找的答案3
。
Numpy提供numpy.linalg.matrix_rank()
:
>>> import numpy
>>> numpy.__version__
'1.5.1'
>>> A = numpy.matrix([[1,3,7],[2,8,3],[7,8,1]])
>>> numpy.linalg.matrix_rank(A)
3
我有一个矩阵。只有唯一的颜色以不同的权重重复它们自己。从它们中,我得选择一半,另一半必须用从第一个中最接近的元素替换。 我想到了在图像中循环,并搜索最近的颜色为当前的一个。找到后,我把一个换成另一个。 但我有3个循环、、。前两个I循环通过RGB矩阵,第三个用于循环到包含最终颜色的矩阵。这需要一些时间来计算。 可以做些什么来加快它的速度? 循环如下所示: 表示选择为最终颜色的半色。 我可以考虑一些小
问题内容: 我正在尝试计算Java中的逆矩阵。 我遵循伴随方法(首先计算伴随矩阵,然后转置该矩阵,最后将其乘以行列式值的倒数)。 当矩阵不太大时有效。我检查过,对于尺寸最大为12x12的矩阵,可以快速提供结果。但是,当矩阵大于12x12时,完成计算所需的时间呈指数增长。 我需要反转的矩阵是19x19,并且花费太多时间。消耗更多时间的方法是用于行列式计算的方法。 我使用的代码是: 有人知道如何更有效
如上所述,我需要用Python找到矩阵的基-2-对数。当然,我知道公式$log_a(x)=ln(x)/ln(a)$,其中ln是自然对数,但据我所知,这只适用于标量参数x(如果我错了请纠正我)。至少我还没有看到任何论据,为什么这也适用于矩阵。 那么,有人知道是否存在这样一个内置在matrix-log2函数吗? 或者:由于几年前我使用过Mathematica,所以我知道了MatrixFunction[
2.5.1 介绍 (密集) 矩阵是: 数据对象 存储二维值数组的数据结构 重要特征: 一次分配所有项目的内存 通常是一个连续组块,想一想Numpy数组 快速访问个项目(*) 2.5.1.1 为什么有稀疏矩阵? 内存,增长是n**2 小例子(双精度矩阵): In [2]: import numpy as np import matplotlib.pyplot as plt x = np.li
问题内容: 我想通过Tensorflow计算Jacobian矩阵。 是)我有的: 是损失函数,都是可训练的变量,并且是许多数据。 但是,如果我们增加数据数量,则需要花费大量时间来运行该功能。有任何想法吗? 问题答案: 假设和是Tensorflow张量,并且取决于: 结果具有形状,并提供的每个元素相对于的每个元素的偏导数。
我正在计算两大组向量(具有相同特征)之间的余弦相似度。每组向量表示为一个scipy CSR稀疏矩阵a和B。我想计算一个x B^T,它不会稀疏。但是,我只需要跟踪超过某个阈值的值,例如0.8。我正试图用vanilla RDD在Pyspark中实现这一点,目的是使用为scipy CSR矩阵实现的快速向量操作。 A和B的行是标准化的,所以为了计算余弦相似度,我只需要找到A中每一行与B中每一行的点积。A的