采访中有人问我以下问题:
有什么方法可以仅使用1个变量生成斐波那契数列?
我不知道该怎么回答。我该怎么说?
是的,您可以使用封闭形式的表达式:
哪里
您可以使用a计算表达式double
并将结果四舍五入到最接近的整数。由于浮点运算的精度有限,因此对于足够大的n,此公式将给出错误的答案,但我认为在结果适合Java
32位整数的情况下,该公式将起作用。
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。 fib = lambda n: n if n <= 2 else fib(n - 1) + fib(n - 2) 第二种记忆方法 def memo(func): cache = {} def wrap(*args): if args not in cache: cache[ar
主要内容:递归生成斐波那契数列,总结公元 1202 年,意大利数学家莱昂纳多·斐波那契提出了具备以下特征的数列: 前两个数的值分别为 0 、1 或者 1、1; 从第 3 个数字开始,它的值是前两个数字的和; 为了纪念他,人们将满足以上两个特征的数列称为斐波那契数列。 如下就是一个斐波那契数列: 1 1 2 3 5 8 13 21 34...... 下面的动画展示了斐波那契数列的生成过程: 图 1 斐波那契数列 很多编程题目要求我们输
题目链接 NowCoder 题目描述 求斐波那契数列的第 n 项,n <= 39。 <!--1}\end{array}\right." class="mathjax-pic"/> --> 解题思路 如果使用递归求解,会重复计算一些子问题。例如,计算 f(4) 需要计算 f(3) 和 f(2),计算 f(3) 需要计算 f(2) 和 f(1),可以看到 f(2) 被重复计算了。 递归是将一个问题划分
Python3 实例 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13,特别指出:第0项是0,第1项是第一个1。从第三项开始,每一项都等于前两项之和。 Python 实现斐波那契数列代码如下: 实例(Python 3.0+)# -*- coding: UTF-8 -*- # Filename : test.py # author by : www.runoob.com
问题内容: 我在大学为我的Programming II类编写的程序需要一些帮助。这个问题要求人们使用递归来计算斐波那契数列。必须将计算出的斐波那契数存储在一个数组中,以停止不必要的重复计算并减少计算时间。 我设法使程序在没有数组和存储的情况下运行,现在我试图实现该功能,但遇到了麻烦。我不确定如何组织它。我已经浏览了Google并浏览了一些书,但没有太多帮助我解决如何实施解决方案的方法。 上面是不正
一、题目 写一个函数,输入n,求斐波那契数列的第n项值。 斐波那契数列的定义如下: 二、解题思路 按照上述递推式,可以使用循环或递归的方式获取第n项式。 三、解题代码 public class Test { /** * 写一个函数,输入n,求斐波那契(Fibonacci) 数列的第n项 * @param n Fibonacci数的项数 * @ret