当前位置: 首页 > 面试题库 >

逻辑回归怎么实现多分类

晁国发
2023-03-14
本文向大家介绍逻辑回归怎么实现多分类相关面试题,主要包含被问及逻辑回归怎么实现多分类时的应答技巧和注意事项,需要的朋友参考一下

参考回答:

方式一:修改逻辑回归的损失函数,使用softmax函数构造模型解决多分类问题,softmax分类模型会有相同于类别数的输出,输出的值为对于样本属于各个类别的概率,最后对于样本进行预测的类型为概率值最高的那个类别。

方式二:根据每个类别都建立一个二分类器,本类别的样本标签定义为0,其它分类样本标签定义为1,则有多少个类别就构造多少个逻辑回归分类器

若所有类别之间有明显的互斥则使用softmax分类器,若所有类别不互斥有交叉的情况则构造相应类别个数的逻辑回归分类器。

 类似资料:
  • 逻辑回归对应线性回归,但旨在解决分类问题,即将模型的输出转换为从 0 到 1 之间的概率值。逻辑回归直接对分类的可能性进行建模,无需事先假设数据的分布。 最理想的转换函数为单位阶跃函数(也称Heaviside函数),但单位阶跃函数是不连续的,没法在实际计算中使用。故而,在分类过程中更常使用对数几率函数(即sigmoid函数): $$f(x)=\frac{1}{1+e^{-x}}$$ 这样,模型就变

  • 本文向大家介绍python实现逻辑回归的示例,包括了python实现逻辑回归的示例的使用技巧和注意事项,需要的朋友参考一下 代码 以上就是python实现逻辑回归的示例的详细内容,更多关于python 逻辑回归的资料请关注呐喊教程其它相关文章!

  • 综述  “子非鱼,焉知鱼之乐” 本文采用编译器:jupyter  逻辑回归方法是从线性回归方法发展过来的,通常解决的是分类问题,读者或许有这样一个疑问:既然是回归算法又么解决分类问题的呢? 道理其实很简单,在我们求出线性回归系数a,b之后,对于每一个输入的x值,模型都可以输出对应的y值,如果把输出值y限制在0到1的范围内,那么这个y就非常的像一个概率p,我们只用规定概率的不同取值范围对应不同的标记

  • 本文向大家介绍PyTorch线性回归和逻辑回归实战示例,包括了PyTorch线性回归和逻辑回归实战示例的使用技巧和注意事项,需要的朋友参考一下 线性回归实战 使用PyTorch定义线性回归模型一般分以下几步: 1.设计网络架构 2.构建损失函数(loss)和优化器(optimizer) 3.训练(包括前馈(forward)、反向传播(backward)、更新模型参数(update)) 迭代十次打印

  • 主要内容:语法,示例,创建回归模型逻辑回归是一种回归模型,其响应变量(因变量)具有分类值,如或。 它实际上是根据与预测变量相关的数学方程,来衡量二进制响应的概率作为响应变量的值。 逻辑回归的一般数学方程为 - 以下是使用的参数的描述 - y - 是响应变量。 x - 是预测变量。 a 和 b 是数字常数的系数。 用于创建回归模型的函数是函数。 语法 用于计算逻辑回归的函数的基本语法是 - 以下是使用的参数的描述 - formula

  • 问题内容: 我们需要使用Java进行逻辑回归。我们在Python http://blog.smellthedata.com/2009/06/python- logistic-regression- with-l2.html中 使用了此代码,并且基本上希望在Java中使用相同的代码。我被定向到Weka,但许可是非商业性的。 我发现Omegahat API具有像Scipy这样的BFGS最小化器,但我无