我正在使用以下df:
c.sort_values('2005', ascending=False).head(3)
GeoName ComponentName IndustryId IndustryClassification Description 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
37926 Alabama Real GDP by state 9 213 Support activities for mining 99 98 117 117 115 87 96 95 103 102 (NA)
37951 Alabama Real GDP by state 34 42 Wholesale trade 9898 10613 10952 11034 11075 9722 9765 9703 9600 9884 10199
37932 Alabama Real GDP by state 15 327 Nonmetallic mineral products manufacturing 980 968 940 1084 861 724 714 701 589 641 (NA)
我想在所有年份中强制使用数字:
c['2014'] = pd.to_numeric(c['2014'], errors='coerce')
有没有简单的方法可以做到这一点,还是我必须全部输入?
更新: 您以后不需要转换值,可以在读取CSV时 即时 进行:
In [165]: df=pd.read_csv(url, index_col=0, na_values=['(NA)']).fillna(0)
In [166]: df.dtypes
Out[166]:
GeoName object
ComponentName object
IndustryId int64
IndustryClassification object
Description object
2004 int64
2005 int64
2006 int64
2007 int64
2008 int64
2009 int64
2010 int64
2011 int64
2012 int64
2013 int64
2014 float64
dtype: object
如果您需要将多列转换为数字dtypes,请使用以下技术:
样本来源DF:
In [271]: df
Out[271]:
id a b c d e f
0 id_3 AAA 6 3 5 8 1
1 id_9 3 7 5 7 3 BBB
2 id_7 4 2 3 5 4 2
3 id_0 7 3 5 7 9 4
4 id_0 2 4 6 4 0 2
In [272]: df.dtypes
Out[272]:
id object
a object
b int64
c int64
d int64
e int64
f object
dtype: object
将选定的列转换为数字dtypes:
In [273]: cols = df.columns.drop('id')
In [274]: df[cols] = df[cols].apply(pd.to_numeric, errors='coerce')
In [275]: df
Out[275]:
id a b c d e f
0 id_3 NaN 6 3 5 8 1.0
1 id_9 3.0 7 5 7 3 NaN
2 id_7 4.0 2 3 5 4 2.0
3 id_0 7.0 3 5 7 9 4.0
4 id_0 2.0 4 6 4 0 2.0
In [276]: df.dtypes
Out[276]:
id object
a float64
b int64
c int64
d int64
e int64
f float64
dtype: object
PS,如果要选择 所有 string
(object
)列,请使用以下简单技巧:
cols = df.columns[df.dtypes.eq('object')]
我有一个数据帧,如: 所以我想通过两个“for循环”添加一些列,如: 新的类似数据帧的图片: 我的代码不起作用: 如何编写代码来获得像第二张图片这样的数据帧?
我正在读取一个包含多个datetime列的csv文件。我需要在读取文件时设置数据类型,但datetimes似乎是个问题。例如: 运行时出现错误: 不理解数据类型"datetime" 通过pandas在事实之后转换列。to_datetime()不是一个选项,我不知道哪些列将成为datetime对象。这些信息可以更改,并且来自于通知我的数据类型列表的任何信息。 或者,我尝试用numpy.genfrom
问题内容: 我有一个包含多个列的数据集,我希望对其进行一次热编码。但是,我不想为每个编码都有编码,因为所说的列与所说的项目有关。我想要的是一组使用所有列的虚拟变量。请参阅我的代码以获得更好的解释。 假设我的数据框如下所示: 如果我执行 输出将是 但是,我想获得的是这样的东西: 代替具有表示编码,例如多列的和,我只希望有一组(,,等等)与值时任何在列中的值的,,显示出来。 需要说明的是,在我的原始数
我正在编写一个代码,将滚动窗口应用于返回多列的函数。 输入:熊猫系列 预期输出:3列数据帧 res的内容: 错误: 我尝试过的: 在应用中更改原始=真 在应用中使用lambda函数 以列表/numpy数组/dataframe/series的形式返回fun1中的结果 我还浏览了SO中的许多相关帖子,以陈述以下几点: 熊猫-使用`。滚动()`在多个列上 但是指定的解决方案都没有解决这个问题。 有没有直
问题内容: 支持多级列名: 此功能非常有用,因为它允许“水平”地将同一数据框的多个版本附加到区分实例的列名称的第一级(在我的示例中)。 想象一下我已经有一个这样的数据框: 有没有一种好方法可以向列名添加另一个级别,类似于行索引: 问题答案: 无需创建元组列表 采用: 结果数据框: 2014年1月25日起提出要求
问题内容: 我正在寻找最快的惯用类比到SQL MINUS(AKA EXCEPT)运算符 。 这就是我的意思-给出两个如下的Pandas DataFrames: 如何查找仅考虑列并获得以下结果的结果: MVCE: 我尝试了什么: 它给了我正确的结果,但是我感觉必须有一种更加惯用的,更好/更简洁的方法来实现这一目标。 PS DataFrame.isin()方法在这种情况下无济于事,因为它会产生错误的结