pandas
支持多级列名:
>>> x = pd.DataFrame({'instance':['first','first','first'],'foo':['a','b','c'],'bar':rand(3)})
>>> x = x.set_index(['instance','foo']).transpose()
>>> x.columns
MultiIndex
[(u'first', u'a'), (u'first', u'b'), (u'first', u'c')]
>>> x
instance first
foo a b c
bar 0.102885 0.937838 0.907467
此功能非常有用,因为它允许“水平”地将同一数据框的多个版本附加到instance
区分实例的列名称的第一级(在我的示例中)。
想象一下我已经有一个这样的数据框:
a b c
bar 0.102885 0.937838 0.907467
有没有一种好方法可以向列名添加另一个级别,类似于行索引:
x['instance'] = 'first'
x.set_level('instance',append=True)
无需创建元组列表
采用:
pd.MultiIndex.from_product(iterables)
import pandas as pd
import numpy as np
df = pd.Series(np.random.rand(3), index=["a","b","c"]).to_frame().T
df.columns = pd.Multiindex.from_product([["new_label"], df.columns])
结果数据框:
new_label
a b c
0 0.25999 0.337535 0.333568
2014年1月25日起提出要求
问题内容: 我有一个包含多个列的数据集,我希望对其进行一次热编码。但是,我不想为每个编码都有编码,因为所说的列与所说的项目有关。我想要的是一组使用所有列的虚拟变量。请参阅我的代码以获得更好的解释。 假设我的数据框如下所示: 如果我执行 输出将是 但是,我想获得的是这样的东西: 代替具有表示编码,例如多列的和,我只希望有一组(,,等等)与值时任何在列中的值的,,显示出来。 需要说明的是,在我的原始数
我有一个单一的CSV文件,在其中我想重命名一些列相同的名称。我的初始代码如下所示 我用这段代码从dataframe中提取了选定的列 此切片每隔三列获取一次。现在我想用相同的名称重命名每三列一次,但这样重命名我的列会出错 有没有办法在pandas中重命名多个同名列? 除了手动操作,还有其他建议吗?
问题内容: 我有一些数据,导入时会得到以下不需要的列,我正在寻找一种删除所有这些数据的简便方法 它们被0索引索引,所以我尝试了类似 但这不是很有效。我尝试编写一些for循环,但这使我感到震惊,因为熊猫的行为不佳。因此,我在这里问这个问题。 我已经看到了一些类似的示例(投递多列pandas),但这无法回答我的问题。 问题答案: 我不知道您所说的低效率是什么意思,但是如果您指的是打字,那么选择感兴趣的
问题内容: 我在df中有几列相同的名称。需要重命名它们。无论如何,通常的重命名都会重命名,我可以将下面的blah重命名为blah1,blah4,blah5吗? 在[7]中: 问题答案: 我希望在Pandas中找到比通用Python解决方案更多的解决方案。如果Column的get_loc()函数找到带有“ True”值的重复项,则该掩码数组将返回掩码数组,“ True”值指向找到重复项的位置。然后,
问题内容: 我正在使用以下df: 我想在所有年份中强制使用数字: 有没有简单的方法可以做到这一点,还是我必须全部输入? 问题答案: 更新: 您以后不需要转换值,可以在读取CSV时 即时 进行: 如果您需要将多列转换为数字dtypes,请使用以下技术: 样本来源DF: 将选定的列转换为数字dtypes: PS,如果要选择 所有 ()列,请使用以下简单技巧: