我想知道是否有某种方式将所有DataFrame负数替换为零?
如果所有列都是数字列,则可以使用布尔索引:
In [1]: import pandas as pd
In [2]: df = pd.DataFrame({'a': [0, -1, 2], 'b': [-3, 2, 1]})
In [3]: df
Out[3]:
a b
0 0 -3
1 -1 2
2 2 1
In [4]: df[df < 0] = 0
In [5]: df
Out[5]:
a b
0 0 0
1 0 2
2 2 1
对于更一般的情况,此答案显示了private方法_get_numeric_data
:
In [1]: import pandas as pd
In [2]: df = pd.DataFrame({'a': [0, -1, 2], 'b': [-3, 2, 1],
'c': ['foo', 'goo', 'bar']})
In [3]: df
Out[3]:
a b c
0 0 -3 foo
1 -1 2 goo
2 2 1 bar
In [4]: num = df._get_numeric_data()
In [5]: num[num < 0] = 0
In [6]: df
Out[6]:
a b c
0 0 0 foo
1 0 2 goo
2 2 1 bar
使用timedelta
类型,布尔索引似乎可以在单独的列上工作,但不能在整个数据帧上工作。因此,您可以执行以下操作:
In [1]: import pandas as pd
In [2]: df = pd.DataFrame({'a': pd.to_timedelta([0, -1, 2], 'd'),
...: 'b': pd.to_timedelta([-3, 2, 1], 'd')})
In [3]: df
Out[3]:
a b
0 0 days -3 days
1 -1 days 2 days
2 2 days 1 days
In [4]: for k, v in df.iteritems():
...: v[v < 0] = 0
...:
In [5]: df
Out[5]:
a b
0 0 days 0 days
1 0 days 2 days
2 2 days 1 days
更新: 与pd.Timedelta
整个DataFrame上的作品进行比较:
In [1]: import pandas as pd
In [2]: df = pd.DataFrame({'a': pd.to_timedelta([0, -1, 2], 'd'),
...: 'b': pd.to_timedelta([-3, 2, 1], 'd')})
In [3]: df[df < pd.Timedelta(0)] = 0
In [4]: df
Out[4]:
a b
0 0 days 0 days
1 0 days 2 days
2 2 days 1 days
问题内容: 我对熊猫有些陌生。我有一个熊猫数据框,它是1行乘23列。 我想将其转换为系列吗?我想知道最pythonic的方法是什么? 我试过了,但是抱怨。它不够聪明,无法意识到它仍然是数学上的“向量”。 谢谢! 问题答案: 它不够聪明,无法意识到它仍然是数学上的“向量”。 可以说它足够聪明,可以识别尺寸差异。:-) 我认为您可以做的最简单的事情是使用位置选择该行,这将为您提供一个Series,其列
我有一个空单元格的数据框,并希望用NaN替换这些空单元格。之前在这个论坛上提出的解决方案有效,但前提是单元格包含一个空间: 当单元格为空时,此代码不起作用。有人建议用熊猫代码来代替空细胞吗?
问题内容: 我有以下熊猫数据框: 我想将日期时间索引转换为数据框的列。我尝试过,但结果没有改变。任何想法? 问题答案: 需要分配输出或参数:
问题内容: 我有一个熊猫数据框,其中一列包含格式为日期的字符串 例如 目前该列的是。 如何将列值转换为Pandas日期格式? 问题答案: 使用类型
问题内容: 我需要在日期上将2个pandas数据框合并在一起,但是它们当前具有不同的日期类型。1是时间戳(从excel导入),另一个是。 有什么建议吗? 我已经尝试过了,但这仅适用于单个项目(例如),它不能让我应用于整个系列(例如)或数据框。 问题答案: 我从同事那里得到了一些帮助。 这似乎解决了上面发布的问题
问题内容: 我有以下数据框: 我尝试过数据透视表 但出现以下错误: 数据透视表的任何替代选择吗? 问题答案: 您可以用来转置数据框。这将数据框切换为圆形,以便行变为列。 您也可以使用。