我有以下数据框:
0 1
0 enrichment_site value
1 last_updated value
2 image_names value
3 shipping_weight value
4 ean_gtin value
5 stockqty value
6 height__mm value
7 availability value
8 rrp value
9 sku value
10 price_band value
11 item value
我尝试过数据透视表
test.pivot(index=index, columns='0', values='1')
但出现以下错误:
KeyError: '1'
数据透视表的任何替代选择吗?
问题内容: 我对熊猫有些陌生。我有一个熊猫数据框,它是1行乘23列。 我想将其转换为系列吗?我想知道最pythonic的方法是什么? 我试过了,但是抱怨。它不够聪明,无法意识到它仍然是数学上的“向量”。 谢谢! 问题答案: 它不够聪明,无法意识到它仍然是数学上的“向量”。 可以说它足够聪明,可以识别尺寸差异。:-) 我认为您可以做的最简单的事情是使用位置选择该行,这将为您提供一个Series,其列
我想使用两列作为行ID,同时计算基于时间的分组。请看下图: 转化成这样: 正在发生的是,X在时间10发生了0次,但在15和23发生了1次。 Y在10点钟发生了3次,但在15和23没有。等等。
我有一个熊猫数据框,它有语料库的术语频率,术语为行,年份为列,就像这样: 我希望能够通过将每个单词的值除以给定年份的总单词数来标准化它们——有些年份包含两倍多的文本,所以我试图按年缩放(像谷歌图书一样)。我已经看了如何缩放单个列的例子,克里斯·阿尔邦和我在SO上看到了缩放所有列的例子,但是每次我试图将这个数据框转换为一个数组来缩放时,事情都会窒息列这个词不是数字。(我尝试将术语列设置为索引,但不太
我有一个数据帧df: 然后我想删除列表中指示的具有某些序列号的行,假设这里是然后离开: 如何或什么功能可以做到这一点?
问题内容: 我正在寻找一种方法来反向旋转数据框。据我所知,pandas提供了一种pivot或pivot_table方法将EAV df转换为“普通”方法。但是,还有一种方法可以做逆运算吗? 所以给定数据框: 我想将其转换为(EAV模型): 这样做最有效的方法是什么? 问题答案: 假设是索引,将执行以下操作: 如果不是索引,请像这样设置:
问题内容: 要按单列过滤数据帧(df),如果我们考虑男性和女性的数据,则可以: 问题1-但是,如果数据跨越多年并且我只想看2014年的男性,该怎么办? 用其他语言,我可能会做类似的事情: (除了我要执行此操作,并在新的数据框对象中获取原始数据框的子集) 问题2。如何循环执行此操作,并为每个唯一的年份和性别集创建一个数据框对象(例如,2013-男,2013-女,2014-男和2014-女的df 问题