我使用张量流来实现简单的多层感知器进行回归。该代码是从标准mnist分类器修改而来的,我只将输出成本更改为MSE(使用tf.reduce_mean(tf.square(pred-y))
),并更改了一些输入,输出大小设置。但是,如果我使用回归训练网络,则在几个时期之后,输出批次将完全相同。例如:
target: 48.129, estimated: 42.634
target: 46.590, estimated: 42.634
target: 34.209, estimated: 42.634
target: 69.677, estimated: 42.634
......
我尝试使用sklearn.preprocessing.scale尝试不同的批处理大小,不同的初始化和输入归一化(我的输入范围有很大不同)。但是,它们都不起作用。我还尝试了Tensorflow中的sklearn示例之一(使用波士顿数据进行深度神经网络回归)。但是在第40行中出现了另一个错误:
“模块”对象没有属性“ infer_real_valued_columns_from_input”
有人知道问题出在哪里吗?谢谢
我的代码在下面列出,可能有点长,但是很简单:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib import learn
import matplotlib.pyplot as plt
from sklearn.pipeline import Pipeline
from sklearn import datasets, linear_model
from sklearn import cross_validation
import numpy as np
boston = learn.datasets.load_dataset('boston')
x, y = boston.data, boston.target
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(
x, y, test_size=0.2, random_state=42)
total_len = X_train.shape[0]
# Parameters
learning_rate = 0.001
training_epochs = 500
batch_size = 10
display_step = 1
dropout_rate = 0.9
# Network Parameters
n_hidden_1 = 32 # 1st layer number of features
n_hidden_2 = 200 # 2nd layer number of features
n_hidden_3 = 200
n_hidden_4 = 256
n_input = X_train.shape[1]
n_classes = 1
# tf Graph input
x = tf.placeholder("float", [None, 13])
y = tf.placeholder("float", [None])
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Hidden layer with RELU activation
layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
layer_3 = tf.nn.relu(layer_3)
# Hidden layer with RELU activation
layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4'])
layer_4 = tf.nn.relu(layer_4)
# Output layer with linear activation
out_layer = tf.matmul(layer_4, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], 0, 0.1)),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], 0, 0.1)),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], 0, 0.1)),
'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4], 0, 0.1)),
'out': tf.Variable(tf.random_normal([n_hidden_4, n_classes], 0, 0.1))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1], 0, 0.1)),
'b2': tf.Variable(tf.random_normal([n_hidden_2], 0, 0.1)),
'b3': tf.Variable(tf.random_normal([n_hidden_3], 0, 0.1)),
'b4': tf.Variable(tf.random_normal([n_hidden_4], 0, 0.1)),
'out': tf.Variable(tf.random_normal([n_classes], 0, 0.1))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.square(pred-y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Launch the graph
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
# Training cycle
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(total_len/batch_size)
# Loop over all batches
for i in range(total_batch-1):
batch_x = X_train[i*batch_size:(i+1)*batch_size]
batch_y = Y_train[i*batch_size:(i+1)*batch_size]
# Run optimization op (backprop) and cost op (to get loss value)
_, c, p = sess.run([optimizer, cost, pred], feed_dict={x: batch_x,
y: batch_y})
# Compute average loss
avg_cost += c / total_batch
# sample prediction
label_value = batch_y
estimate = p
err = label_value-estimate
print ("num batch:", total_batch)
# Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(avg_cost))
print ("[*]----------------------------")
for i in xrange(3):
print ("label value:", label_value[i], \
"estimated value:", estimate[i])
print ("[*]============================")
print ("Optimization Finished!")
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print ("Accuracy:", accuracy.eval({x: X_test, y: Y_test}))
简短答案 :
移调您pred
使用向量tf.transpose(pred)
。
更长的答案 :
问题在于pred
(预测)和y
(标签)的形状不同:一个是行向量,另一个是列向量。显然,当对它们应用按元素进行操作时,将得到一个矩阵,这不是您想要的。
解决方案是使用来转置预测向量,tf.transpose()
以获得适当的向量,从而获得适当的损失函数。实际上,如果在示例中将批处理大小设置为1,则即使没有修复,它也会起作用,因为转置1x1向量是无操作的。
我将此修复程序应用于您的示例代码,并观察到以下行为。修复之前:
Epoch: 0245 cost= 84.743440580
[*]----------------------------
label value: 23 estimated value: [ 27.47437096]
label value: 50 estimated value: [ 24.71126747]
label value: 22 estimated value: [ 23.87785912]
并在同一时间点修复后:
Epoch: 0245 cost= 4.181439120
[*]----------------------------
label value: 23 estimated value: [ 21.64333534]
label value: 50 estimated value: [ 48.76105118]
label value: 22 estimated value: [ 24.27996063]
您会看到成本要低得多,并且实际上它正确地获知了值50。您必须对学习率进行一些微调,以提高您的学习成绩。
主要内容:使用TensorFlow实现递归神经网络递归神经网络是一种面向深度学习的算法,遵循顺序方法。在神经网络中,我们总是假设每个输入和输出都独立于所有其他层。这些类型的神经网络称为循环,因为它们以顺序方式执行数学计算。 考虑以下步骤来训练递归神经网络 - 第1步 - 从数据集输入特定示例。 第2步 - 网络将举例并使用随机初始化变量计算一些计算。 第3步 - 然后计算预测结果。 第4步 - 生成的实际结果与期望值的比较将产生错误。 第5步 -
我是卷积神经网络新手,对特征映射和如何在图像上进行卷积来提取特征有概念。我很高兴知道一些关于在CNN应用批量标准化的细节。 我知道什么是特征图和不同的元素是权重在每一个特征图。但我不能理解什么是位置或空间位置。 我完全不能理解下面的句子“在alg.1中,我们让B是一个特征映射中的所有值的集合,它跨越了一个小批处理的元素和空间位置。” 如果有人能用更简单的术语来解释我,我会很高兴的
第 10 章介绍了人工神经网络,并训练了我们的第一个深度神经网络。 但它是一个非常浅的 DNN,只有两个隐藏层。 如果你需要解决非常复杂的问题,例如检测高分辨率图像中的数百种类型的对象,该怎么办? 你可能需要训练更深的 DNN,也许有 10 层,每层包含数百个神经元,通过数十万个连接来连接。 这不会是闲庭信步: 首先,你将面临棘手的梯度消失问题(或相关的梯度爆炸问题),这会影响深度神经网络,并使较
我一直在上神经网络的课,不太明白为什么我从逻辑回归的准确度得分和两层神经网络(输入层和输出层)中得到不同的结果。输出层使用sigmoid激活功能。据我所知,我们可以使用神经网络中的sigmoid激活函数来计算概率。这应该是非常相似的,如果不完全相同的逻辑回归试图完成。然后从那里使用梯度下降进行反向传播以最小化误差。这可能有一个简单的解释,但我不明白为什么准确度得分差异如此之大。在这个例子中,我没有
我想构建一个神经网络,同时输出一个分类标签和一个回归值。我想使用Keras来做到这一点。现在我的代码仅用于分类: 现在我在输出层上有一个softmax激活函数,对应于我用于分类的概率。如何修改此代码以同时输出表示回归问题的continuos值。我知道Keras函数API允许指定多输入和多输出网络。谁知道我该怎么做?
我使用以下代码将预先训练的ResNet50 keras模型导出到tensorflow中,以便为tensorflow提供服务: 最后,我使用以下函数对tensorflow服务进行预测: 然后,我从一个ipython shell中使用上面的两个函数从ImageNet的val集中选择随机的imagenes,我已经在本地存储了这些ImageNet。问题是tensorflow服务总是为我发送的所有图像返回相