可视化成对关系(Visualizing Pairwise Relationship)
优质
小牛编辑
125浏览
2023-12-01
实时研究中的数据集包含许多变量。 在这种情况下,应分析每个变量之间的关系。 绘制(n,2)组合的双变量分布将是一个非常复杂和耗时的过程。
要在数据集中绘制多个成对的双变量分布,可以使用pairplot()函数。 这显示了DataFrame中变量(n,2)组合作为图表矩阵的关系,对角线图是单变量图。
Axes
在本节中,我们将了解轴是什么,它们的用法,参数等等。
用法 (Usage)
seaborn.pairplot(data,…)
参数 (Parameters)
下表列出了Axes的参数 -
Sr.No. | 参数和描述 |
---|---|
1 | data 数据帧 |
2 | hue 数据变量将绘图方面映射到不同的颜色。 |
3 | palette 用于映射色调变量的颜色集 |
4 | kind 一种非身份关系的情节。 {'scatter','reg'} |
5 | diag_kind 对角子图的一种情节。 {'hist','kde'} |
除数据外,所有其他参数均为可选参数。 pairplot可以接受的其他参数很少。 上面提到的常用params。
例子 (Example)
import pandas as pd
import seaborn as sb
from matplotlib import pyplot as plt
df = sb.load_dataset('iris')
sb.set_style("ticks")
sb.pairplot(df,hue = 'species',diag_kind = "kde",kind = "scatter",palette = "husl")
plt.show()
输出 (Output)
我们可以观察每个图中的变化。 图表采用矩阵格式,行名称表示x轴,列名称表示y轴。
对角线图是核密度图,其他图是如上所述的散点图。