加密类(新版)

优质
小牛编辑
142浏览
2023-12-01

重要

绝不要使用这个类或其他任何加密类来进行密码处理!密码应该是被 哈希 ,你应该使用 PHP 自带的 密码哈希扩展 。

加密类提供了双向数据加密的方式,为了实现密码学意义上的安全,它使用了一些并非在所有系统上都可用的 PHP 的扩展, 要使用这个类,你的系统上必须安装了下面的扩展:

  • OpenSSL
  • MCrypt (要支持 MCRYPT_DEV_URANDOM

只要有一点不满足,我们就无法为你提供足够高的安全性。

  • 使用加密类
    • 初始化类
    • 默认行为
    • 设置 encryption_key 参数
    • 支持的加密算法和模式
      • 可移植的算法(Portable ciphers)
      • 特定驱动的算法(Driver-specific ciphers)
      • 加密模式
    • 消息长度
    • 配置类库
    • 对数据进行加密与解密
      • 实现原理
      • 使用自定义参数
      • 支持的 HMAC 认证算法
  • 类参考

使用加密类

初始化类

正如 CodeIgniter 中的其他类一样,在你的控制器中使用 $this->load->library() 方法来初始化加密类:

$this->load->library('encryption');

初始化之后,加密类的对象就可以这样访问:

$this->encryption

默认行为

默认情况下,加密类会通过你配置的 encryption_key 参数和 SHA512 HMAC 认证, 使用 AES-128 算法的 CBC 模式。

注解

选择使用 AES-128 算法不仅是因为它已经被证明相当强壮, 而且它也已经在不同的加密软件和编程语言 API 中广泛的使用了。

但是要注意的是,encryption_key 参数的用法可能并不是你想的那样。

如果你对密码学有点熟悉的话,你应该知道,使用 HMAC 算法认证也需要使用一个密钥, 而在加密的过程和认证的过程中使用相同的密钥可不是个好的做法。

正因为此,程序会从你的配置的 encryption_key 参数中派生出两个密钥来: 一个用于加密,另一个用于认证。这其实是通过一种叫做 HKDF (HMAC-based Key Derivation Function)的技术实现的。

设置 encryption_key 参数

加密密钥 encryption key 是用于控制加密过程的一小段信息,使用它可以对普通文本进行加密和解密。 这个过程可以保证只有你能对数据进行解密,其他人是看不到你的数据的,这其中的关键就是加密密钥。 如果你使用了一个密钥来加密数据,那么就只能通过这个密钥来解密,所以你不仅应该仔细选择你的密钥, 还应该好好的保管好它,不要忘记了。

还有一点要注意的是,为了确保最高的安全性,这个密钥不仅 应该 越强壮越好,而且 应该 经常修改。 不过这在现实中很难做到,也不好实现,所以 CodeIgniter 提供了一个配置参数用于设置你的密钥, 这个密钥(几乎)每次都会用到。

不用说,你应该小心保管好你的密钥,如果有人得到了你的密钥,那么数据就能很容易的被解密。 如果你的服务器不在你的控制之下,想保证你的密钥绝对安全是不可能的, 所以在在你使用密钥对敏感数据(例如信用卡号码)进行加密之前,请再三斟酌。

你的加密密钥的长度 必须 满足正在使用的加密算法允许的长度。例如,AES-128 算法最长支持 128 位(16 字节)。下面有一个表列出了不同算法支持的密钥长度。

你所使用的密钥应该越随机越好,它不能是一个普通的文本字符串,经过哈希函数处理过也不行。 为了生成一个合适的密钥,你应该使用加密类提供的 create_key() 方法:

// $key will be assigned a 16-byte (128-bit) random key
$key = $this->encryption->create_key(16);

密钥可以保存在 application/config/config.php 配置文件中,或者你也可以设计你自己的存储机制, 然后加密解密的时候动态的去获取它。

如果要保存在配置文件 application/config/config.php 中,可以打开该文件,然后设置:

$config['encryption_key'] = 'YOUR KEY';

你会发现 create_key() 方法返回的是二进制数据,没办法复制粘贴,所以你可能还需要使用 bin2hex()hex2bin() 或 Base64 编码来更好的处理密钥数据。例如:

// Get a hex-encoded representation of the key:
$key = bin2hex($this->encryption->create_key(16));

// Put the same value in your config with hex2bin(),
// so that it is still passed as binary to the library:
$config['encryption_key'] = hex2bin(<your hex-encoded key>);

支持的加密算法和模式

可移植的算法(Portable ciphers)

因为 MCrypt 和 OpenSSL (我们也称之为“驱动”)支持的加密算法不同,而且实现方式也不太一样, CodeIgniter 将它们设计成一种可移植的方式来使用,换句话说,你可以交换使用它们两个, 至少对它们两个驱动都支持的算法来说是这样。

而且 CodeIgniter 的实现也和其他编程语言和类库的标准实现一致。

下面是可移植算法的清单,其中 "CodeIgniter 名称" 一栏就是你在使用加密类的时候使用的名称:

算法名称CodeIgniter 名称密钥长度 (位 / 字节)支持的模式
AES-128 / Rijndael-128aes-128128 / 16CBC, CTR, CFB, CFB8, OFB, ECB
AES-192aes-192192 / 24CBC, CTR, CFB, CFB8, OFB, ECB
AES-256aes-256256 / 32CBC, CTR, CFB, CFB8, OFB, ECB
DESdes56 / 7CBC, CFB, CFB8, OFB, ECB
TripleDEStripledes56 / 7, 112 / 14, 168 / 21CBC, CFB, CFB8, OFB
Blowfishblowfish128-448 / 16-56CBC, CFB, OFB, ECB
CAST5 / CAST-128cast588-128 / 11-16CBC, CFB, OFB, ECB
RC4 / ARCFourrc440-2048 / 5-256Stream

重要

由于 MCrypt 的内部实现,如果你提供了一个长度不合适的密钥,它会使用另一种不同的算法来加密, 这将和你配置的算法不一致,所以要特别注意这一点!

注解

上表中还有一点要澄清,Blowfish、CAST5 和 RC4 算法支持可变长度的密钥,也就是说, 只要密钥的长度在指定范围内都是可以的。

注解

尽管 CAST5 支持的密钥的长度可以小于 128 位(16 字节),其实实际上,根据 RFC 2144 我们知道,它会用 0 进行补齐到最大长度。

注解

Blowfish 算法支持最短 32 位(4 字节)的密钥,但是经过我们的测试发现,只有密钥长度大于等于 128 位(16 字节) 时,才可以很好的同时支持 MCrypt 和 OpenSSL ,再说,设置这么短的密钥也不是好的做法。

特定驱动的算法(Driver-specific ciphers)

正如前面所说,MCrypt 和 OpenSSL 支持不同的加密算法,所以你也可以选择下面这些只针对某一特定驱动的算法。 但是为了移植性考虑,而且这些算法也没有经过彻底测试,我们并不建议你使用这些算法。

算法名称驱动密钥长度 (位 / 字节)支持的模式
AES-128OpenSSL128 / 16CBC, CTR, CFB, CFB8, OFB, ECB, XTS
AES-192OpenSSL192 / 24CBC, CTR, CFB, CFB8, OFB, ECB, XTS
AES-256OpenSSL256 / 32CBC, CTR, CFB, CFB8, OFB, ECB, XTS
Rijndael-128MCrypt128 / 16, 192 / 24, 256 / 32CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
Rijndael-192MCrypt128 / 16, 192 / 24, 256 / 32CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
Rijndael-256MCrypt128 / 16, 192 / 24, 256 / 32CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
GOSTMCrypt256 / 32CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
TwofishMCrypt128 / 16, 192 / 24, 256 / 32CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
CAST-128MCrypt40-128 / 5-16CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
CAST-256MCrypt128 / 16, 192 / 24, 256 / 32CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
Loki97MCrypt128 / 16, 192 / 24, 256 / 32CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
SaferPlusMCrypt128 / 16, 192 / 24, 256 / 32CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
SerpentMCrypt128 / 16, 192 / 24, 256 / 32CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
XTEAMCrypt128 / 16CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
RC2MCrypt8-1024 / 1-128CBC, CTR, CFB, CFB8, OFB, OFB8, ECB
RC2OpenSSL8-1024 / 1-128CBC, CFB, OFB, ECB
Camellia-128OpenSSL128 / 16CBC, CFB, CFB8, OFB, ECB
Camellia-192OpenSSL192 / 24CBC, CFB, CFB8, OFB, ECB
Camellia-256OpenSSL256 / 32CBC, CFB, CFB8, OFB, ECB
SeedOpenSSL128 / 16CBC, CFB, OFB, ECB

注解

如果你要使用这些算法,你只需将它的名称以小写形式传递给加密类即可。

注解

你可能已经注意到,所有的 AES 算法(以及 Rijndael-128 算法)也在上面的可移植算法列表中出现了, 这是因为这些算法支持不同的模式。还有很重要的一点是,在使用 128 位的密钥时,AES-128 和 Rijndael-128 算法其实是一样的。

注解

CAST-128 / CAST-5 算法也在两个表格都出现了,这是因为当密钥长度小于等于 80 位时, OpenSSL 的实现貌似有问题。

注解

列表中可以看到 RC2 算法同时被 MCrypt 和 OpenSSL 支持,但是两个驱动对它的实现方式是不一样的, 而且也是不能移植的。我们只找到了一条关于这个的不确定的消息可能是 MCrypt 的实现有问题。

加密模式

加密算法的不同模式有着不同的特性,它们有着不同的目的,有的可能比另一些更强壮,有的可能速度更快, 有的可能提供了额外的功能。 我们并不打算深入研究这个,这应该是密码学专家做的事。下表将向我们普通的用户列出一些简略的参考信息。 如果你是个初学者,直接使用 CBC 模式就可以了,一般情况下它已经足够强壮和安全,并且已经被广泛接受。

模式名称CodeIgniter 名称支持的驱动备注
CBCcbcMCrypt, OpenSSL安全的默认选择
CTRctrMCrypt, OpenSSL理论上比 CBC 更好,但并没有广泛使用
CFBcfbMCrypt, OpenSSLN/A
CFB8cfb8MCrypt, OpenSSL和 CFB 一样,但是使用 8 位模式(不推荐)
OFBofbMCrypt, OpenSSLN/A
OFB8ofb8MCrypt和 OFB 一样,但是使用 8 位模式(不推荐)
ECBecbMCrypt, OpenSSL忽略 IV (不推荐)
XTSxtsOpenSSL通常用来加密可随机访问的数据,如 RAM 或 硬盘
StreamstreamMCrypt, OpenSSL这其实并不是一种模式,只是表明使用了流加密,通常在 算法+模式 的初始化过程中会用到。

消息长度

有一点对你来说可能很重要,加密的字符串通常要比原始的文本字符串要长(取决于算法)。

这个会取决于加密所使用的算法,添加到密文上的 IV ,以及添加的 HMAC 认证信息。 另外,为了保证传输的安全性,加密消息还会被 Base64 编码。

当你选择数据保存机制时请记住这一点,例如 Cookie 只能存储 4k 的信息。

配置类库

考虑到可用性,性能,以及一些历史原因,加密类使用了和老的 加密类 一样的驱动、 加密算法、模式 和 密钥。

上面的 "默认行为" 一节已经提到,系统将自动检测驱动(OpenSSL 优先级要高点),使用 CBC 模式的 AES-128 算法,以及 $config['encryption_key'] 参数。

如果你想改变这点,你需要使用 initialize() 方法,它的参数为一个关联数组,每一项都是可选:

选项可能的值
driver'mcrypt', 'openssl'
cipher算法名称(参见 支持的加密算法和模式
mode加密模式(参见 加密模式
key加密密钥

例如,如果你想将加密算法和模式改为 AES-126 CTR ,可以这样:

$this->encryption->initialize(
    array(
        'cipher' => 'aes-256',
        'mode' => 'ctr',
        'key' => '<a 32-character random string>'
    )
);

另外,我们也可以设置一个密钥,如前文所说,针对所使用的算法选择一个合适的密钥非常重要。

我们还可以修改驱动,如果你两种驱动都支持,但是出于某种原因你想使用 MCrypt 来替代 OpenSSL

// Switch to the MCrypt driver
$this->encryption->initialize(array('driver' => 'mcrypt'));

// Switch back to the OpenSSL driver
$this->encryption->initialize(array('driver' => 'openssl'));

对数据进行加密与解密

使用已配置好的参数来对数据进行加密和解密是非常简单的,你只要将字符串传给 encrypt() 和/或 decrypt() 方法即可:

$plain_text = 'This is a plain-text message!';
$ciphertext = $this->encryption->encrypt($plain_text);

// Outputs: This is a plain-text message!
echo $this->encryption->decrypt($ciphertext);

这样就行了!加密类会为你完成所有必须的操作并确保安全,你根本不用关系细节。

重要

两个方法在遇到错误时都会返回 FALSE ,如果是 encrypt() 返回 FALSE , 那么只可能是配置参数错了。在生产代码中一定要对 decrypt() 方法进行检查。

实现原理

如果你非要知道整个过程的实现步骤,下面是内部的实现:

  • $this->encryption->encrypt($plain_text)
    1. 通过 HKDF 和 SHA-512 摘要算法,从你配置的 encryption_key 参数中获取两个密钥:加密密钥 和 HMAC 密钥。
    2. 生成一个随机的初始向量(IV)。
    3. 使用上面的加密密钥和 IV ,通过 AES-128 算法的 CBC 模式(或其他你配置的算法和模式)对数据进行加密。
    4. 将 IV 附加到密文后。
    5. 对结果进行 Base64 编码,这样就可以安全的保存和传输它,而不用担心字符集问题。
    6. 使用 HMAC 密钥生成一个 SHA-512 HMAC 认证消息,附加到 Base64 字符串后,以保证数据的完整性。
  • $this->encryption->decrypt($ciphertext)
    1. 通过 HKDF 和 SHA-512 摘要算法,从你配置的 encryption_key 参数中获取两个密钥:加密密钥 和 HMAC 密钥。 由于 encryption_key 不变,所以生成的结果和上面 encrypt() 方法生成的结果是一样的,否则你没办法解密。
    2. 检查字符串的长度是否足够长,并从字符串中分离出 HMAC ,然后验证是否一致(这可以防止时序攻击), 如果验证失败,返回 FALSE 。
    3. 进行 Base64 解码。
    4. 从密文中分离出 IV ,并使用 IV 和 加密密钥对数据进行解密。

使用自定义参数

假设你需要和另一个系统交互,这个系统不受你的控制,而且它使用了其他的方法来加密数据, 加密的方式和我们上面介绍的流程不一样。

在这种情况下,加密类允许你修改它的加密和解密的流程,这样你就可以简单的调整成自己的解决方案。

注解

通过这种方式,你可以不用在配置文件中配置 encryption_key 就能使用加密类。

你所需要做的就是传一个包含一些参数的关联数组到 encrypt()decrypt() 方法,下面是个例子:

// Assume that we have $ciphertext, $key and $hmac_key
// from on outside source

$message = $this->encryption->decrypt(
    $ciphertext,
    array(
        'cipher' => 'blowfish',
        'mode' => 'cbc',
        'key' => $key,
        'hmac_digest' => 'sha256',
        'hmac_key' => $hmac_key
    )
);

在上面的例子中,我们对一段使用 CBC 模式的 Blowfish 算法加密的消息进行解密,并使用 SHA-256 HMAC 认证方式。

重要

注意在这个例子中 'key' 和 'hmac_key' 参数都要指定,当使用自定义参数时,加密密钥和 HMAC 密钥 不再是默认的那样从配置参数中自动获取的了。

下面是所有可用的选项。

但是,除非你真的需要这样做,并且你知道你在做什么,否则我们建议你不要修改加密的流程,因为这会影响安全性, 所以请谨慎对待。

选项默认值必须的 / 可选的描述
cipherN/AYes加密算法(参见 支持的加密算法和模式
modeN/AYes加密模式(参见 加密模式
keyN/AYes加密密钥
hmacTRUENo是否使用 HMAC 布尔值,如果为 FALSE ,hmac_digesthmac_key 将被忽略
hmac_digestsha512NoHMAC 消息摘要算法(参见 支持的 HMAC 认证算法
hmac_keyN/AYes,除非 hmac 设为 FALSEHMAC 密钥
raw_dataFALSENo加密文本是否保持原样 布尔值,如果为 TRUE ,将不执行 Base64 编码和解码操作 HMAC 也不会是十六进制字符串

重要

encrypt() and decrypt() will return FALSE if a mandatory parameter is not provided or if a provided value is incorrect. This includes hmac_key, unless hmac is set to FALSE.

支持的 HMAC 认证算法

对于 HMAC 消息认证,加密类支持使用 SHA-2 家族的算法:

算法原始长度(字节)十六进制编码长度(字节)
sha51264128
sha3844896
sha2563264
sha2242856

之所以没有包含一些其他的流行算法,例如 MD5 或 SHA1 ,是因为这些算法目前已被证明不够安全, 我们并不鼓励使用它们。如果你非要使用这些算法,简单的使用 PHP 的原生函数 hash_hmac() 也可以。

当未来出现广泛使用的更好的算法时,我们自然会将其添加进去。

类参考

class CI_Encryption
initialize($params)
参数:
  • $params (array) -- Configuration parameters
返回:

CI_Encryption instance (method chaining)

返回类型:

CI_Encryption

初始化加密类的配置,使用不同的驱动,算法,模式 或 密钥。

例如:

$this->encryption->initialize(
    array('mode' => 'ctr')
);

请参考 配置类库 一节了解详细信息。

encrypt($data[, $params = NULL])
参数:
  • $data (string) -- Data to encrypt
  • $params (array) -- Optional parameters
返回:

Encrypted data or FALSE on failure

返回类型:

string

对输入数据进行加密,并返回密文。

例如:

$ciphertext = $this->encryption->encrypt('My secret message');

请参考 使用自定义参数 一节了解更多参数信息。

decrypt($data[, $params = NULL])
参数:
  • $data (string) -- Data to decrypt
  • $params (array) -- Optional parameters
返回:

Decrypted data or FALSE on failure

返回类型:

string

对输入数据进行解密,并返回解密后的文本。

例如:

echo $this->encryption->decrypt($ciphertext);

请参考 使用自定义参数 一节了解更多参数信息。

create_key($length)
参数:
  • $length (int) -- Output length
返回:

A pseudo-random cryptographic key with the specified length, or FALSE on failure

返回类型:

string

从操作系统获取随机数据(例如 /dev/urandom),并生成加密密钥。

hkdf($key[, $digest = 'sha512'[, $salt = NULL[, $length = NULL[, $info = '']]]])
参数:
  • $key (string) -- Input key material
  • $digest (string) -- A SHA-2 family digest algorithm
  • $salt (string) -- Optional salt
  • $length (int) -- Optional output length
  • $info (string) -- Optional context/application-specific info
返回:

A pseudo-random key or FALSE on failure

返回类型:

string

从一个密钥生成另一个密钥(较弱的密钥)。

这是内部使用的一个方法,用于从配置的 encryption_key 参数生成一个加密密钥和 HMAC 密钥。

将这个方法公开,是为了可能会在其他地方使用到。关于这个算法的描述可以看 RFC 5869 。

和 RFC 5869 描述不同的是,这个方法不支持 SHA1 。

例如:

$hmac_key = $this->encryption->hkdf(
    $key,
    'sha512',
    NULL,
    NULL,
    'authentication'
);

// $hmac_key is a pseudo-random key with a length of 64 bytes