Dynamic Programming - Unique Paths
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
这题是一道典型的dp问题,如果机器人要到(i, j)这个点,他可以选择先到(i - 1, j)或者,(i, j - 1),也就是说,到(i, j)的唯一路径数等于(i - 1, j)加上(i, j - 1)的个数,所以我们很容易得出dp方程:
dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
dp[i][j]表示从点(0, 0)到(i, j)唯一路径数量。
代码如下:
class Solution {
public:
int uniquePaths(int m, int n) {
int dp[m][n];
//初始化dp,m x 1情况全为1
for(int i = 0; i < m; i++) {
dp[i][0] = 1;
}
//初始化dp,1 x n情况全为1
for(int j = 0; j < n; j++) {
dp[0][j] = 1;
}
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
};
Unique Paths II
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
这题跟上一题唯一的区别在于多了障碍物,如果某一个点有障碍,那么机器人无法通过。
代码如下:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
if(obstacleGrid.empty() || obstacleGrid[0].empty()) {
return 0;
}
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
int dp[m][n];
//下面初始dp的时候需要根据obstacleGrid的值来确定
dp[0][0] = (obstacleGrid[0][0] == 0 ? 1 : 0);
//我们需要注意m x 1以及1 x n的初始化
for(int i = 1; i < m; i++) {
dp[i][0] = ((dp[i - 1][0] == 1 && obstacleGrid[i][0] == 0) ? 1 : 0);
}
for(int j = 1; j < n; j++) {
dp[0][j] = ((dp[0][j - 1] == 1 && obstacleGrid[0][j] == 0) ? 1 : 0);
}
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
if(obstacleGrid[i][j] == 1) {
dp[i][j] = 0;
} else {
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
return dp[m - 1][n - 1];
}
};
Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
这题跟前面两题差不多,所以放到这里说明了。我们使用dp[i][j]表明从(0, 0)到(i, j)最小的路径和,那么dp方程为:
dp[i][j] = min(dp[i][j-1], dp[i - 1][j]) + grid[i][j]
代码如下:
class Solution {
public:
int minPathSum(vector<vector<int> > &grid) {
if(grid.empty() || grid[0].empty()) {
return 0;
}
int row = grid.size();
int col = grid[0].size();
int dp[row][col];
dp[0][0] = grid[0][0];
for(int i = 1; i < row; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for(int j = 1; j < col; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
for(int i = 1; i < row; i++) {
for(int j = 1; j < col; j++) {
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[row - 1][col - 1];
}
};