以下针对最近使用PaddleClas和PaddleServing在华为云GPU服务器上训练和部署一个车辆类型识别模型过程进行记录,以供日后自己参考和其他有需要的朋友一些帮助,接触这方面东西时间较短,如有问题欢迎批评指正。
如何在华为云服务器上搭建GPU版本的PaddlePaddle环境请参考以下文章: https://blog.csdn.net/loutengyuan/article/details/126527326
需要准备PaddleClas的运行环境和Paddle Serving的运行环境。
# 克隆代码
git clone https://github.com/PaddlePaddle/PaddleClas
# 安装serving,用于启动服务
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
pip3 install paddle_serving_server_gpu-0.8.3.post102-py3-none-any.whl
# 安装client,用于向服务发送请求
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_client-0.8.3-cp38-none-any.whl
pip3 install paddle_serving_client-0.8.3-cp38-none-any.whl
# 安装serving-app
wget https://paddle-serving.bj.bcebos.com/test-dev/whl/paddle_serving_app-0.8.3-py3-none-any.whl
pip3 install paddle_serving_app-0.8.3-py3-none-any.whl
将分类整理好的数据按照不同分类分别放在不同文件夹下,然后将数据上传至华为云服务器,目录结构如下:
# tree ./TruckType
.
├── test_01.jpg
├── TruckType
│ ├── 0-qyc
│ │ ├── 10765.jpg
│ │ ├── 19994.jpg
│ │ ├── 1029.jpg
│ │ ├── 106710.jpg
│ │ ├── 9610.jpg
│ │ ├── 98388.jpg
│ │ └── 9938.jpg
│ ├── 1-zhc
│ │ ├── 10154.jpg
│ │ ├── 1055.jpg
│ │ ├── 10801.jpg
│ │ ├── 9969.jpg
│ │ ├── 9970.jpg
│ │ ├── 9513.jpg
│ │ └── 9515.jpg
│ ├── 2-zxc
│ │ ├── 5274.jpg
│ │ ├── 69648.jpg
│ │ ├── 6649.jpg
│ │ ├── 5651.jpg
│ │ ├── 3055.jpg
│ │ ├── 7630.jpg
│ │ ├── 58.jpg
│ │ └── 9082.jpg
│ ├── 3-gc
│ │ ├── 9587.jpg
│ │ ├── 855.jpg
│ │ ├── 663.jpg
│ │ ├── 5611.jpg
│ │ ├── 9085.jpg
│ │ └── 2284.jpg
│ ├── 4-jbc
│ │ ├── 874.jpg
│ │ ├── 56456.jpg
│ │ ├── 36576.jpg
│ │ └── 25244.jpg
│ ├── all_list.txt
│ ├── label_list.txt
│ ├── test_list.txt
│ ├── train_list.txt
│ └── val_list.txt
└── write_label_truck_type.py
test_01.jpg
用于测试训练模型
0-qyc 、1-zhc 、2-zxc 、3-gc 、4-jbc
分别是不同类型的车辆类型图片(注意:图片文件名最好不要有中文、括号或者空格之类的特殊字符,容易训练报错)
all_list.txt、label_list.txt、test_list.txt、train_list.txt、val_list.txt
分别是处理后生成的标签文件
write_label_truck_type.py
是处理数据的脚步文件,用于自动生成以上标签文件
生成标签文件脚步 write_label_truck_type.py 代码如下:
# -*- coding: utf-8 -*-
import os
import sys
from sklearn.utils import shuffle
# 拿到总的训练数据txt
# -*- coding: utf-8 -*-
# 根据官方paddleclas的提示,我们需要把图像变为两个txt文件
# train_list.txt(训练集)
# val_list.txt(验证集)
# 先把路径搞定 比如:foods/beef_carpaccio/855780.jpg ,读取到并写入txt
# 根据左侧生成的文件夹名字来写根目录
# 先得到总的txt后续再进行划分,因为要划分出验证集,所以要先打乱,因为原本是有序的
def get_all_txt(image_root, dir_name):
all_list = []
label_list = []
i = 0 # 标记总文件数量
# j = -1 # 标记文件类别
for root, dirs, files in os.walk(image_root+dir_name): # 分别代表根目录、文件夹、文件
if "ipynb_checkpoints" in root:
continue
strs = str(root).replace(image_root+dir_name+"/", "").split('-')
if len(strs) != 2:
continue
label_idx_str = strs[0].replace(" ", "")
print("root = {} label_idx_str = {}".format(root, label_idx_str))
label_list.append("{} {}\n".format(label_idx_str, strs[1]))
for file in files:
i = i + 1
# 文件中每行格式: 图像相对路径 图像的label_id(数字类别)(注意:中间有空格)。
img_path = os.path.join(root, file).replace(image_root, "")
all_list.append(img_path+" " + label_idx_str + "\n")
# j = j + 1
label_list.sort()
return all_list, i, label_list
if __name__ == "__main__":
if len(sys.argv) < 3:
print("请传入预处理图像根目录和文件夹: 传入参数长度错误!")
else:
# for arg in sys.argv:
# print(arg)
image_root = sys.argv[1]
dir_name = sys.argv[2]
print("image_root = {} dir_name = {}".format(image_root, dir_name))
# 拿到总的训练数据txt
all_list, all_len, label_list = get_all_txt(image_root, dir_name)
print(all_len)
print(label_list)
# 写入标签文件
label_str = ''.join(label_list)
f = open(image_root+dir_name+'/label_list.txt', 'w', encoding='utf-8')
f.write(label_str)
print("写入标签文件完成")
# 把数据打乱
all_list = shuffle(all_list)
allstr = ''.join(all_list)
f = open(image_root+dir_name+'/all_list.txt', 'w', encoding='utf-8')
f.write(allstr)
print("打乱成功,并写入文本")
# 按照比例划分数据集 食品的数据有5000张图片,不算大数据,一般9:1即可
train_size = int(all_len * 0.8)
train_list = all_list[:train_size]
temp_list = all_list[train_size:]
val_size = int(len(temp_list) * 0.8)
val_list = temp_list[:val_size]
test_list = temp_list[val_size:]
print(len(train_list))
print(len(val_list))
print(len(test_list))
# 生成训练集txt
train_txt = ''.join(train_list)
f_train = open(image_root+dir_name+'/train_list.txt', 'w', encoding='utf-8')
f_train.write(train_txt)
f_train.close()
print("train_list.txt 生成成功!")
# 生成验证集txt
val_txt = ''.join(val_list)
f_val = open(image_root+dir_name+'/val_list.txt', 'w', encoding='utf-8')
f_val.write(val_txt)
f_val.close()
print("val_list.txt 生成成功!")
# 生成测试集txt
test_txt = ''.join(test_list)
f_test = open(image_root+dir_name+'/test_list.txt', 'w', encoding='utf-8')
f_test.write(test_txt)
f_test.close()
print("test_list.txt 生成成功!")
执行脚本:
cd 数据目录
python write_label_truck_type.py ./ TruckType
all_list.txt、test_list.txt、train_list.txt、val_list.txt 内容格式类似如下:
TruckType/1-zhc/495218.jp 1
TruckType/3-gc/543432.jpg 3
TruckType/2-zxc/3453.jpg 2
TruckType/2-zxc/343453.jpg 2
TruckType/3-gc/34545.jpg 3
TruckType/1-zhc/637371.jpg 1
TruckType/0-qyc/32354.jpg 0
TruckType/0-qyc/650456.jpg 0
label_list.txt 格式如下:
0 0-qyc
1 1-zhc
2 2-zxc
3 3-gc
4 4-jbc
进入之前下载的PaddleClas代码目录
# cd PaddleClas
# ll
total 148
drwxr-xr-x 2 root root 4096 Aug 25 14:52 benchmark
drwxr-xr-x 2 root root 4096 Aug 25 14:52 dataset
drwxr-xr-x 22 root root 4096 Sep 2 11:10 deploy
drwxr-xr-x 6 root root 4096 Aug 25 14:52 docs
-rw-r--r-- 1 root root 28095 Aug 25 14:52 hubconf.py
drwxr-xr-x 4 root root 4096 Sep 3 09:32 inference
-rw-r--r-- 1 root root 705 Aug 25 14:52 __init__.py
-rw-r--r-- 1 root root 11357 Aug 25 14:52 LICENSE
-rw-r--r-- 1 root root 259 Aug 25 14:52 MANIFEST.in
drwxr-xr-x 6 root root 4096 Sep 3 08:55 output
-rw-r--r-- 1 root root 24463 Aug 25 14:52 paddleclas.py
drwxr-xr-x 12 root root 4096 Aug 31 16:34 ppcls
-rw-r--r-- 1 root root 9819 Aug 25 14:52 README_ch.md
-rw-r--r-- 1 root root 9149 Aug 25 14:52 README_en.md
-rw-r--r-- 1 root root 12 Aug 25 14:52 README.md
-rw-r--r-- 1 root root 148 Aug 25 14:52 requirements.txt
-rw-r--r-- 1 root root 2343 Aug 25 14:52 setup.py
drwxr-xr-x 3 root root 4096 Aug 25 14:52 tests
drwxr-xr-x 5 root root 4096 Aug 25 14:52 test_tipc
drwxr-xr-x 2 root root 4096 Aug 25 14:52 tools
主要是以下几点:分类数、训练和验证的路径、图像尺寸、数据预处理、训练和预测的num_workers: 0
(需要将num_workers改为0,因为是单卡的)
下面以新手快速入门的ShuffleNetV2_x0_25为例子演示,实际上PaddleClas/ppcls/configs/ImageNet/下面的文件夹全都是模型文件,可以自行选用。
路径如下:
PaddleClas/ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25.yaml
将其拷贝一份出来命名为ShuffleNetV2_x0_25_truck_type.yaml 路径如下:
PaddleClas/ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25_truck_type.yaml
修改配置文件 ShuffleNetV2_x0_25_truck_type.yaml 如下:
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: ./output/truck_type/
# 使用GPU训练
device: gpu
# 每几个轮次保存一次
save_interval: 1
eval_during_train: True
# 每几个轮次验证一次
eval_interval: 1
# 训练轮次
epochs: 100
print_batch_step: 1
use_visualdl: True #开启可视化(目前平台不可用)
# used for static mode and model export
# 图像大小
image_shape: [3, 224, 224]
save_inference_dir: ./inference/clas_truck_type_infer
# training model under @to_static
to_static: False
# model architecture
Arch:
# 采用的网络
name: ShuffleNetV2_x0_25
class_num: 5
# loss function config for traing/eval process
Loss:
Train:
- CELoss:
weight: 1.0
Eval:
- CELoss:
weight: 1.0
Optimizer:
name: Momentum
momentum: 0.9
lr:
name: Piecewise
learning_rate: 0.015
decay_epochs: [30, 60, 90]
values: [0.1, 0.01, 0.001, 0.0001]
regularizer:
name: 'L2'
coeff: 0.0005
# data loader for train and eval
DataLoader:
Train:
dataset:
name: ImageNetDataset
# 根路径
image_root: /yxdata/truck_type/
# 前面自己生产得到的训练集文本路径
cls_label_path: /yxdata/truck_type/TruckType/train_list.txt
# 数据预处理
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 0
use_shared_memory: True
Eval:
dataset:
name: ImageNetDataset
# 根路径
image_root: /yxdata/truck_type/
# 前面自己生产得到的验证集文本路径
cls_label_path: /yxdata/truck_type/TruckType/val_list.txt
# 数据预处理
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 128
drop_last: False
shuffle: True
loader:
num_workers: 0
use_shared_memory: True
Infer:
infer_imgs: /yxdata/truck_type/test_01.jpg
batch_size: 10
transforms:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
- ToCHWImage:
PostProcess:
name: Topk
# 输出的可能性最高的前topk个
topk: 3
# 标签文件 需要自己新建文件
class_id_map_file: /yxdata/truck_type/TruckType/label_list.txt
Metric:
Train:
- TopkAcc:
topk: [1, 3]
Eval:
- TopkAcc:
topk: [1, 3]
python3 tools/train.py \
-c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25_truck_type.yaml \
-o Global.device=gpu
训练后会在 PaddleClas/output/truck_type/
目录下生成模型文件
# tree ./truck_type/
├── ShuffleNetV2_x0_25
│ ├── best_model.pdopt
│ ├── best_model.pdparams
│ ├── best_model.pdstates
│ ├── epoch_100.pdopt
│ ├── epoch_100.pdparams
│ ├── epoch_100.pdstates
│ ├── epoch_10.pdopt
│ ├── epoch_10.pdparams
│ ├── epoch_10.pdstates
│ ├── epoch_11.pdopt
│ ├── epoch_11.pdparams
│ ├── epoch_11.pdstates
│ ├── epoch_1.pdopt
│ ├── epoch_1.pdparams
│ ├── epoch_1.pdstates
│ ├── export.log
│ ├── infer.log
│ ├── latest.pdopt
│ ├── latest.pdparams
│ ├── latest.pdstates
│ └── train.log
└── vdl
└── vdlrecords.1662166534.log
python3 tools/infer.py \
-c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25_truck_type.yaml \
-o Infer.infer_imgs=/yxdata/truck_type/test_01.jpg \
-o Global.pretrained_model=output/truck_type/ShuffleNetV2_x0_25/best_model
预测结果如下:
[{'class_ids': [4, 0, 1], 'scores': [0.9976, 0.00225, 0.0001], 'file_name': '/yxdata/truck_type/test_01.jpg', 'label_names': ['1-zhc', '3-gc', '2-zxc']}]
python3 tools/infer.py \
-c ./ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25_truck_type.yaml \
-o Infer.infer_imgs=/yxdata/truck_type/ \
-o Global.pretrained_model=output/truck_type/ShuffleNetV2_x0_25/best_model
预测结果如下:
[{'class_ids': [4, 0, 1], 'scores': [0.9976, 0.00225, 0.0001], 'file_name': '/yxdata/truck_type/test_01.jpg', 'label_names': ['1-zhc', '3-gc', '2-zxc']}]
python3 tools/export_model.py \
-c ppcls/configs/quick_start/new_user/ShuffleNetV2_x0_25_truck_type.yaml \
-o Global.pretrained_model=output/truck_type/ShuffleNetV2_x0_25/best_model
导出成功后将在 PaddleClas/inference/clas_truck_type_infer/ 目录下生成模型文件,结构如下:
# tree ./clas_truck_type_infer/
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
进入工作目录:
cd PaddleClas/deploy/
创建并进入models文件夹:
# 创建并进入models文件夹
mkdir models
cd models
将上一步模型训练的最后导出的练好的 inference 模型放到该文件夹下,结构如下:
└── clas_truck_type_infer
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
转换车辆类型分类 inference 模型为 Serving 模型:
# 转换车辆类型分类模型
python3.8 -m paddle_serving_client.convert \
--dirname ./clas_truck_type_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--serving_server ./clas_truck_type_serving/ \
--serving_client ./clas_truck_type_client/
车辆类型分类 inference 模型转换完成后,会在当前文件夹多出 clas_truck_type_serving/和 clas_truck_type_client/ 的文件夹,具备如下结构:
├── clas_truck_type_serving/
│ ├── inference.pdiparams
│ ├── inference.pdmodel
│ ├── serving_server_conf.prototxt
│ └── serving_server_conf.stream.prototxt
└── clas_truck_type_client/
├── serving_client_conf.prototxt
└── serving_client_conf.stream.prototxt
模型参数修改
Serving 为了兼容不同模型的部署,提供了输入输出重命名的功能。让不同的模型在推理部署时,只需要修改配置文件的 alias_name 即可,无需修改代码即可完成推理部署。因此在转换完毕后需要分别修改 clas_truck_type_serving下的文件 serving_server_conf.prototxt 和 clas_truck_type_client 下的文件 serving_client_conf.prototxt,将 fetch_var 中 alias_name: 后的字段改为 prediction,修改后的 serving_server_conf.prototxt 和 serving_client_conf.prototxt 如下所示:
feed_var {
name: "x"
alias_name: "x"
is_lod_tensor: false
feed_type: 1
shape: 3
shape: 224
shape: 224
}
fetch_var {
name: "softmax_1.tmp_0"
alias_name: "prediction"
is_lod_tensor: false
fetch_type: 1
shape: 5
}
上述命令中参数具体含义如下表所示:
参数 | 类型 | 默认值 | 描述 |
---|---|---|---|
dirname | str | - | 需要转换的模型文件存储路径,Program结构文件和参数文件均保存在此目录。 |
model_filename | str | None | 存储需要转换的模型Inference Program结构的文件名称。如果设置为None,则使用 __model__ 作为默认的文件名 |
params_filename | str | None | 存储需要转换的模型所有参数的文件名称。当且仅当所有模型参数被保>存在一个单独的二进制文件中,它才需要被指定。如果模型参数是存储在各自分离的文件中,设置它的值为None |
serving_server | str | "serving_server" | 转换后的模型文件和配置文件的存储路径。默认值为serving_server |
serving_client | str | "serving_client" | 转换后的客户端配置文件存储路径。默认值为serving_client |
进入到工作目录
cd ./deploy/paddleserving/
paddleserving 目录包含启动 Python Pipeline 服务、C++ Serving 服务和发送预测请求的代码,包括:
__init__.py
classification_web_service.py # 启动pipeline服务端的脚本
config.yml # 启动pipeline服务的配置文件
pipeline_http_client.py # http方式发送pipeline预测请求的脚本
pipeline_rpc_client.py # rpc方式发送pipeline预测请求的脚本
readme.md # 分类模型服务化部署文档
run_cpp_serving.sh # 启动C++ Serving部署的脚本
test_cpp_serving_client.py # rpc方式发送C++ serving预测请求的脚本
修改config.yml文件如下:
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 1
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 8877
#rpc_port: 9993
dag:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: False
op:
clas_truck_type:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 1
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf:
#uci模型路径
model_config: ../models/clas_truck_type_serving
# model_config: ../models/ResNet50_vd_serving
#计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 1
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: "0" # "0,1"
#client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测
client_type: local_predictor
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["prediction"]
修改 classification_web_service.py 文件如下:
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
import sys
from paddle_serving_app.reader import Sequential, URL2Image, Resize, CenterCrop, RGB2BGR, Transpose, Div, Normalize, Base64ToImage
try:
from paddle_serving_server_gpu.web_service import WebService, Op
except ImportError:
from paddle_serving_server.web_service import WebService, Op
import logging
import numpy as np
import base64, cv2
class TruckTypeClasOp(Op):
def init_op(self):
print("------------------------ TruckTypeClasOp init_op ---------------------------")
self.seq = Sequential([
Resize(256), CenterCrop(224), RGB2BGR(), Transpose((2, 0, 1)),
Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225],
True)
])
self.label_dict = {}
label_idx = 0
with open("truck_type_list.label") as fin:
for line in fin:
self.label_dict[label_idx] = line.strip()
label_idx += 1
print("label_dict --> {}".format(self.label_dict))
def preprocess(self, input_dicts, data_id, log_id):
print("{} TruckTypeClasOp preprocess\tbegin\t--> data_id: {}".format(datetime.datetime.now(), data_id))
(_, input_dict), = input_dicts.items()
batch_size = len(input_dict.keys())
imgs = []
for key in input_dict.keys():
data = base64.b64decode(input_dict[key].encode('utf8'))
data = np.fromstring(data, np.uint8)
im = cv2.imdecode(data, cv2.IMREAD_COLOR)
img = self.seq(im)
imgs.append(img[np.newaxis, :].copy())
input_imgs = np.concatenate(imgs, axis=0)
print("{} TruckTypeClasOp preprocess\tfinish\t--> data_id: {}".format(datetime.datetime.now(), data_id))
# return {"inputs": input_imgs}, False, None, ""
return {"x": input_imgs}, False, None, ""
def postprocess(self, input_dicts, fetch_dict, data_id, log_id):
print("{} TruckTypeClasOp postprocess\tbegin\t--> data_id: {}".format(datetime.datetime.now(), data_id))
score_list = fetch_dict["prediction"]
print("{} data_id: {} --> score_list: {}".format(datetime.datetime.now(), data_id, score_list))
result = []
for score in score_list:
item = {}
score = score.tolist()
max_score = max(score)
idx = score.index(max_score)
print("{} data_id: {} --> max_score = {} --> idx = {}".format(datetime.datetime.now(), data_id, max_score, idx))
if self.label_dict is not None:
if idx < len(self.label_dict):
label = self.label_dict[score.index(max_score)].strip().replace(",", "")
else:
label = 'ErrorType'
else:
label = str(idx)
item["label"] = label
item["prob"] = max_score
result.append(item)
print("{} TruckTypeClasOp postprocess\tfinish\t--> data_id: {} --> result:{}".format(datetime.datetime.now(), data_id, result))
return {"result": str({"truck_type": result})}, None, ""
class ClassificationService(WebService):
def get_pipeline_response(self, read_op):
truck_type_op = TruckTypeClasOp(name="clas_truck_type", input_ops=[read_op])
return truck_type_op
uci_service = ClassificationService(name="classification")
uci_service.prepare_pipeline_config("config.yml")
uci_service.run_service()
添加文件 truck_type_list.label ,内容如下:
牵引车
载货车
自卸车
挂车
搅拌车
启动服务:
# 启动服务,运行日志保存在 paddleclas_recognition_log.txt
nohup python3.8 -u classification_web_service.py &>./paddleclas_recognition_log.txt &
查看进程
ps -ef|grep python
关闭进程
# 通过上一步查看进程号,杀死指定进程
kill -9 19913
# 或者通过以下命令
python3.8 -m paddle_serving_server.serve stop
查看日志
tail -f 1000 ./paddleclas_recognition_log.txt
如何查看端口占用
$: netstat -anp | grep 8888
tcp 0 0 127.0.0.1:8888 0.0.0.0:* LISTEN 13404/python3
tcp 0 1 172.17.0.10:34036 115.42.35.84:8888 SYN_SENT 14586/python3
强制杀掉进程:通过pid
$: kill -9 13404
$: kill -9 14586
$: netstat -anp | grep 8888
$:
修改pipeline_http_client.py文件如下:
import requests
import json
import base64
import os
def cv2_to_base64(image):
return base64.b64encode(image).decode('utf8')
if __name__ == "__main__":
url = "http://127.0.0.1:8877/classification/prediction"
with open(os.path.join(".", "图片路径.jpg"), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
data = {"key": ["image"], "value": [image]}
for i in range(1):
r = requests.post(url=url, data=json.dumps(data))
print(r.json())
发送请求:
python3.8 pipeline_http_client.py
成功运行后,模型预测的结果会打印在客户端中,如下所示:
{'err_no': 0, 'err_msg': '', 'key': ['result'], 'value': ["{'truck_type': [{'label': '载货车', 'prob': 0.98669669032096863}]}"], 'tensors': []}