TensorFlow-Slim在MNIST数据集上实现LeNet-5模型
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 9 22:00:18 2018
@author: muli
"""
import tensorflow as tf
import tensorflow.contrib.slim as slim
from tensorflow.examples.tutorials.mnist import input_data
# 通过TensorFlow-Slim来定义LeNet-5的网络结构。
def lenet5(inputs):
inputs = tf.reshape(inputs, [-1, 28, 28, 1])
net = slim.conv2d(inputs, 32, [5, 5], padding='SAME', scope='layer1-conv')
net = slim.max_pool2d(net, 2, stride=2, scope='layer2-max-pool')
net = slim.conv2d(net, 64, [5, 5], padding='SAME', scope='layer3-conv')
net = slim.max_pool2d(net, 2, stride=2, scope='layer4-max-pool')
net = slim.flatten(net, scope='flatten')
net = slim.fully_connected(net, 500, scope='layer5')
net = slim.fully_connected(net, 10, scope='output')
return net
# 2. 和之前的章节类似的训练模型
def train(mnist):
# 训练数据 及 标签
x = tf.placeholder(tf.float32, [None, 784], name='x-input')
y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')
# 对数据进行训练
y = lenet5(x)
# 交叉熵
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=y, labels=tf.argmax(y_, 1))
# 计算损失
loss = tf.reduce_mean(cross_entropy)
# 优化
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(5001):
xs, ys = mnist.train.next_batch(100)
_, loss_value = sess.run([train_op, loss], feed_dict={x: xs, y_: ys})
if i % 100 == 0:
print("After %d training step(s), loss on training batch is %g." % (i, loss_value))
# 3. 主程序
def main(argv=None):
mnist = input_data.read_data_sets("./datasets/MNIST_data", one_hot=True)
train(mnist)
if __name__ == '__main__':
main()