(pytorch-深度学习)循环神经网络的从零开始实现

东郭自强
2023-12-01

循环神经网络的从零开始实现

  • 首先,我们读取周杰伦专辑歌词数据集:
import time
import math
import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F
import sys
sys.path.append("..") 

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
    # 减1是因为输出的索引x是相应输入的索引y加1
    num_examples = (len(corpus_indices) - 1) // num_steps
    epoch_size = num_examples // batch_size
    example_indices = list(range(num_examples))
    random.shuffle(example_indices)

    # 返回从pos开始的长为num_steps的序列
    def _data(pos):
        return corpus_indices[pos: pos + num_steps]
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

    for i in range(epoch_size):
        # 每次读取batch_size个随机样本
        i = i * batch_size
        batch_indices = example_indices[i: i + batch_size]
        X = [_data(j * num_steps) for j in batch_indices]
        Y = [_data(j * num_steps + 1) for j in batch_indices]
        yield torch.tensor(X, dtype=torch.float32, device=device), torch.tensor(Y, dtype=torch.float32, device=device)
(corpus_indices, char_to_idx, idx_to_char, vocab_size) = load_data_jay_lyrics()

这里解释一下corpus_indices(每个字对应的索引值 的排列)、batch_size(每个小批量的样本数)、num_steps(每个样本所包含的时间步数)三者之间的关系

  • 首先 e p o c h _ s i z e = ⌊ ⌊ l e n ( c o r p u s _ i n d i c e s ) − 1 n u m _ s t e p s ⌋ b a t c h _ s i z e ⌋ epoch\_size = \lfloor\frac{\lfloor \frac{len(corpus\_indices) - 1 }{num\_steps} \rfloor} {batch\_size} \rfloor epoch_size=batch_sizenum_stepslen(corpus_indices)1

  • 将corpus_indices分割成多个num_steps长度的sample,并记录每个sample的index,组成example_indices

  • 将example_indices打乱

  • batch_size表示每一个epoch处理的sample的数量,其中每个sample处理的过程为:

    • 在example_indices中按顺序选一个点x,sample = corpus_indices[x:x+num_steps]
    • 循环batch_size次,就提取了batch_size个sample。

接下来用一个例子展示:

  • 输入一个从0到29的连续整数的人工序列。
  • 设批量大小和时间步数分别为2和6。
  • 打印随机采样每次读取的小批量样本的输入X和标签Y。
my_seq = list(range(30))
for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6):
    print('X:', X, '\nY:', Y, '\n')
X: tensor([[18., 19., 20., 21., 22., 23.],
        [12., 13., 14., 15., 16., 17.]]) 
Y: tensor([[19., 20., 21., 22., 23., 24.],
        [13., 14., 15., 16., 17., 18.]]) 

X: tensor([[ 0.,  1.,  2.,  3.,  4.,  5.],
        [ 6.,  7.,  8.,  9., 10., 11.]]) 
Y: tensor([[ 1.,  2.,  3.,  4.,  5.,  6.],
        [ 7.,  8.,  9., 10., 11., 12.]]) 

由该结果可见,相邻的两个随机小批量在原始序列上的位置不一定相邻。

one-hot编码

为了将词表示成向量输入到神经网络,一个简单的办法是使用one-hot向量。

  • 假设词典中不同字符的数量为 N N N(即词典大小vocab_size),每个字符已经同一个从0到 N − 1 N-1 N1的连续整数值索引一一对应。
  • 如果一个字符的索引是整数 i i i, 那么我们创建一个全0的长为 N N N的向量,并将其位置为 i i i的元素设成1。
  • 该向量就是对原字符的one-hot向量。

实现one-hot函数:

def one_hot(x, n_class, dtype=torch.float32): 
    # X shape: (batch), output shape: (batch, n_class)
    x = x.long()
    res = torch.zeros(x.shape[0], n_class, dtype=dtype, device=x.device)
    res.scatter_(1, x.view(-1, 1), 1) #按列填充
    return res
    
x = torch.tensor([0, 2])
one_hot(x, vocab_size)

每次采样的小批量的形状是(批量大小, 时间步数)。

  • 构造一个函数将这样的小批量变换成数个可以输入进网络的形状为(批量大小, 词典大小)的矩阵,矩阵个数等于时间步数。
  • 也就是说,时间步 t t t的输入为 X t ∈ R n × d \boldsymbol{X}_t \in \mathbb{R}^{n \times d} XtRn×d,其中 n n n为批量大小, d d d为输入个数,即one-hot向量长度(词典大小)。
def to_onehot(X, n_class):  
    # X shape: (batch, seq_len), output: seq_len elements of (batch, n_class)
    return [one_hot(X[:, i], n_class) for i in range(X.shape[1])]

X = torch.arange(10).view(2, 5)
inputs = to_onehot(X, vocab_size)
print(len(inputs), inputs[0].shape)

output:

5 torch.Size([2, 1027])

初始化模型参数

num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
print('will use', device)

def get_params():
    def _one(shape):
        ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)
        return torch.nn.Parameter(ts, requires_grad=True)

    # 隐藏层参数
    W_xh = _one((num_inputs, num_hiddens))
    W_hh = _one((num_hiddens, num_hiddens))
    b_h = torch.nn.Parameter(torch.zeros(num_hiddens, device=device, requires_grad=True))
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, requires_grad=True))
    return nn.ParameterList([W_xh, W_hh, b_h, W_hq, b_q])

隐藏单元个数 num_hiddens是一个超参数。

定义模型

我们根据循环神经网络的计算表达式实现该模型。

  • 首先定义init_rnn_state函数来返回初始化的隐藏状态。它返回由一个形状为(批量大小, 隐藏单元个数)的值为0的NDArray组成的元组。
  • 使用元组是为了更便于处理隐藏状态含有多个NDArray的情况。
def init_rnn_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

rnn函数定义了在一个时间步里如何计算隐藏状态和输出。这里的激活函数使用了tanh函数。当元素在实数域上均匀分布时,tanh函数值的均值为0。

def rnn(inputs, state, params):
    # inputs和outputs皆为num_steps个形状为(batch_size, vocab_size)的矩阵
    W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        H = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(H, W_hh) + b_h)
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H,)

测试观察输出结果的个数(时间步数),以及第一个时间步的输出层输出的形状和隐藏状态的形状。

state = init_rnn_state(X.shape[0], num_hiddens, device)
inputs = to_onehot(X.to(device), vocab_size)
params = get_params()
outputs, state_new = rnn(inputs, state, params)
print(len(outputs), outputs[0].shape, state_new[0].shape) 

output:

5 torch.Size([2, 1027]) torch.Size([2, 256])

定义预测函数

定义函数基于前缀prefix(含有数个字符的字符串)来预测接下来的num_chars个字符。这个函数中将循环神经单元rnn设置成了函数参数。

def predict_rnn(prefix, num_chars, rnn, params, init_rnn_state,
                num_hiddens, vocab_size, device, idx_to_char, char_to_idx):
    state = init_rnn_state(1, num_hiddens, device)
    output = [char_to_idx[prefix[0]]]
    for t in range(num_chars + len(prefix) - 1):
        # 将上一时间步的输出作为当前时间步的输入
        X = to_onehot(torch.tensor([[output[-1]]], device=device), vocab_size)
        # 计算输出和更新隐藏状态
        (Y, state) = rnn(X, state, params)
        # 下一个时间步的输入是prefix里的字符或者当前的最佳预测字符
        if t < len(prefix) - 1:
            output.append(char_to_idx[prefix[t + 1]])
        else:
            output.append(int(Y[0].argmax(dim=1).item()))
    return ''.join([idx_to_char[i] for i in output])

先测试一下predict_rnn函数。将根据前缀“分开”创作长度为10个字符(不考虑前缀长度)的一段歌词。因为模型参数为随机值,所以预测结果也是随机的。

predict_rnn('分开', 10, rnn, params, init_rnn_state, num_hiddens, vocab_size,
            device, idx_to_char, char_to_idx)

输出:

'分开东升稻花转花细碎应说'

裁剪梯度

循环神经网络中较容易出现梯度衰减或梯度爆炸。为了应对梯度爆炸,我们可以裁剪梯度(clip gradient)。假设我们把所有模型参数梯度的元素拼接成一个向量 g \boldsymbol{g} g,并设裁剪的阈值是 θ \theta θ。裁剪后的梯度

min ⁡ ( θ ∣ g ∣ , 1 ) g \min\left(\frac{\theta}{|\boldsymbol{g}|}, 1\right)\boldsymbol{g} min(gθ,1)g

L 2 L_2 L2范数不超过 θ \theta θ

def grad_clipping(params, theta, device):
    norm = torch.tensor([0.0], device=device)
    for param in params:
        norm += (param.grad.data ** 2).sum()
    norm = norm.sqrt().item()
    if norm > theta:
        for param in params:
            param.grad.data *= (theta / norm)

困惑度

我们通常使用困惑度(perplexity)来评价语言模型的好坏。

  • 困惑度是对交叉熵损失函数做指数运算后得到的值。
  • 最佳情况下,模型总是把标签类别的概率预测为1,此时困惑度为1;
  • 最坏情况下,模型总是把标签类别的概率预测为0,此时困惑度为正无穷;
  • 基线情况下,模型总是预测所有类别的概率都相同,此时困惑度为类别个数。

显然,任何一个有效模型的困惑度必须小于类别个数。在本例中,困惑度必须小于词典大小vocab_size。

定义模型训练函数

  • 使用困惑度评价模型。
  • 在迭代模型参数前裁剪梯度。
  • 对时序数据采用不同采样方法将导致隐藏状态初始化的不同。
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
    # 减1是因为输出的索引x是相应输入的索引y加1
    num_examples = (len(corpus_indices) - 1) // num_steps
    epoch_size = num_examples // batch_size
    example_indices = list(range(num_examples))
    random.shuffle(example_indices)

    # 返回从pos开始的长为num_steps的序列
    def _data(pos):
        return corpus_indices[pos: pos + num_steps]
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    for i in range(epoch_size):
        # 每次读取batch_size个随机样本
        i = i * batch_size
        batch_indices = example_indices[i: i + batch_size]
        X = [_data(j * num_steps) for j in batch_indices]
        Y = [_data(j * num_steps + 1) for j in batch_indices]
        yield torch.tensor(X, dtype=torch.float32, device=device), torch.tensor(Y, dtype=torch.float32, device=device)

def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):
    if device is None:
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    corpus_indices = torch.tensor(corpus_indices, dtype=torch.float32, device=device)
    data_len = len(corpus_indices)
    batch_len = data_len // batch_size
    indices = corpus_indices[0: batch_size*batch_len].view(batch_size, batch_len)
    epoch_size = (batch_len - 1) // num_steps
    for i in range(epoch_size):
        i = i * num_steps
        X = indices[:, i: i + num_steps]
        Y = indices[:, i + 1: i + num_steps + 1]
        yield X, Y

def sgd(params, lr, batch_size):
    # 为了和原书保持一致,这里除以了batch_size,但是应该是不用除的,因为一般用PyTorch计算loss时就默认已经
    # 沿batch维求了平均了。
    for param in params:
        param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.data

def train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, is_random_iter, num_epochs, num_steps,
                          lr, clipping_theta, batch_size, pred_period,
                          pred_len, prefixes):
    if is_random_iter:
        data_iter_fn = data_iter_random
    else:
        data_iter_fn = data_iter_consecutive
    params = get_params()
    loss = nn.CrossEntropyLoss()

    for epoch in range(num_epochs):
        if not is_random_iter:  # 如使用相邻采样,在epoch开始时初始化隐藏状态
            state = init_rnn_state(batch_size, num_hiddens, device)
        l_sum, n, start = 0.0, 0, time.time()
        data_iter = data_iter_fn(corpus_indices, batch_size, num_steps, device)
        for X, Y in data_iter:
            if is_random_iter:  # 如使用随机采样,在每个小批量更新前初始化隐藏状态
                state = init_rnn_state(batch_size, num_hiddens, device)
            else:  
            # 否则需要使用detach函数从计算图分离隐藏状态, 这是为了
            # 使模型参数的梯度计算只依赖一次迭代读取的小批量序列(防止梯度计算开销太大)
                for s in state:
                    s.detach_()
            
            inputs = to_onehot(X, vocab_size)
            # outputs有num_steps个形状为(batch_size, vocab_size)的矩阵
            (outputs, state) = rnn(inputs, state, params)
            # 拼接之后形状为(num_steps * batch_size, vocab_size)
            outputs = torch.cat(outputs, dim=0)
            # Y的形状是(batch_size, num_steps),转置后再变成长度为
            # batch * num_steps 的向量,这样跟输出的行一一对应
            y = torch.transpose(Y, 0, 1).contiguous().view(-1)
            # 使用交叉熵损失计算平均分类误差
            l = loss(outputs, y.long())
            
            # 梯度清0
            if params[0].grad is not None:
                for param in params:
                    param.grad.data.zero_()
            l.backward()
            grad_clipping(params, clipping_theta, device)  # 裁剪梯度
            sgd(params, lr, 1)  # 因为误差已经取过均值,梯度不用再做平均
            l_sum += l.item() * y.shape[0]
            n += y.shape[0]

        if (epoch + 1) % pred_period == 0:
            print('epoch %d, perplexity %f, time %.2f sec' % (
                epoch + 1, math.exp(l_sum / n), time.time() - start))
            for prefix in prefixes:
                print(' -', predict_rnn(prefix, pred_len, rnn, params, init_rnn_state,
                    num_hiddens, vocab_size, device, idx_to_char, char_to_idx))

训练模型并创作歌词

设置模型超参数

num_epochs, num_steps, batch_size, lr, clipping_theta = 250, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']

根据前缀“分开”和“不分开”分别创作长度为50个字符(不考虑前缀长度)的一段歌词。我们每过50个迭代周期便根据当前训练的模型创作一段歌词。

采用随机采样训练模型并创作歌词。

train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                      vocab_size, device, corpus_indices, idx_to_char,
                      char_to_idx, True, num_epochs, num_steps, lr,
                      clipping_theta, batch_size, pred_period, pred_len,
                      prefixes)

采用相邻采样训练模型并创作歌词。

train_and_predict_rnn(rnn, get_params, init_rnn_state, num_hiddens,
                      vocab_size, device, corpus_indices, idx_to_char,
                      char_to_idx, False, num_epochs, num_steps, lr,
                      clipping_theta, batch_size, pred_period, pred_len,
                      prefixes)
 类似资料: