在开发有限元程序的时候,首先遇到的问题就是实现自动划分网格(meshgrid),matlab可以实现这一功能,它的基本原理就是根据图论和邻接矩阵的原理利用gplot函数和sparse稀疏矩阵实现的,但是它只能实现二维!本人重新编写了一个程序,可以实现三维的网格自动划分(包括三角形单元、矩形单元和六面体单元),程序如下:
a1=zeros(m1*n1);
b1=zeros(m1*n1);
XY1=zeros(m1*n1,2);
x1=zeros(1,m1*n1);
y1=zeros(1,m1*n1);
z1=zeros(1,m1*n1);
for k=1:n1
for i=1:m1
x1(i+(k-1)*m1)=xmin1+(k-1)*(xmax1-xmin1)/(n1-1);
z1(i+(k-1)*m1)=zmin1+(i-1)*(zmax1-zmin1)/(m1-1);
end
end
clear k i
a1(m1,m1)=2;
a1((n1-1)*m1+1,(n1-1)*m1+1)=2;
a1(1,1)=3;
a1(n1*m1,n1*m1)=3;
for i=1:(n1-2)
a1(i*m1+1,i*m1+1)=4;
a1((i+1)*m1,(i+1)*m1)=4;
end
clear i
for j=2:(m1-1)
a1(j,j)=4;
a1((n1-1)*m1+j,(n1-1)*m1+j)=4;
end
clear j
for i=1:(n1-2)
for j=2:(m1-1)
a1(i*m1+j,i*m1+j)=6;
end
end
clear i j
a1=sparse(a1);
for i=1:(n1-1)*m1-1
b1(i,i+1)=-1;
end
clear i
for i=1:(n1-1)*m1
b1(i,i+m1)=-1;
end
clear i
for i=1:(n1-1)*m1-1
b1(i,i+m1+1)=-1;
end
clear i
for k=1:(n1-1)
for h=1:(n1-1)
b1(m1*k,m1*h+1)=0;
end
end
clear k h
for i=(n1-1)*m1+1:n1*m1-1
b1(i,i+1)=-1;
end
clear i
b1=sparse(b1);
b1=a1+b1'+b1;
clear a1
a1=sparse(b1);
clear b1
XY1=[x1',y1',z1'];
a2=zeros(m2*n2);
b2=zeros(m2*n2);
XY2=zeros(m2*n2,2);
x2=0.5*ones(1,m2*n2);
y2=zeros(1,m2*n2);
z2=zeros(1,m2*n2);
for k=1:n2
for i=1:m2
z2(i+(k-1)*m2)=zmin2+(k-1)*(zmax2-zmin2)/(n2-1);
y2(i+(k-1)*m2)=ymin2+(i-1)*(ymax2-ymin2)/(m2-1);
end
end
clear k i
a2(m2,m2)=2;
a2((n2-1)*m2+1,(n2-1)*m2+1)=2;
a2(1,1)=3;
a2(n2*m2,n2*m2)=3;
for i=1:(n2-2)
a2(i*m2+1,i*m2+1)=4;
a2((i+1)*m2,(i+1)*m2)=4;
end
clear i
for j=2:(m2-1)
a2(j,j)=4;
a2((n2-1)*m2+j,(n2-1)*m2+j)=4;
end
clear j
for i=1:(n2-2)
for j=2:(m2-1)
a2(i*m2+j,i*m2+j)=6;
end
end
clear i j
a2=sparse(a2);
for i=1:(n2-1)*m2-1
b2(i,i+1)=-1;
end
clear i
for i=1:(n2-1)*m2
b2(i,i+m2)=-1;
end
clear i
for i=1:(n2-1)*m2-1
b2(i,i+m2+1)=-1;
end
clear i
for k=1:(n2-1)
for h=1:(n2-1)
b2(m2*k,m2*h+1)=0;
end
end
clear k h
for i=(n2-1)*m2+1:n2*m2-1
b2(i,i+1)=-1;
end
clear i
b2=sparse(b2);
b2=a2+b2'+b2;
clear a2
a2=sparse(b2);
clear b2
XY2=[x2',y2',z2'];
a3=zeros(m3*n3);
b3=zeros(m3*n3);
XY3=zeros(m3*n3,2);
x3=1.5*ones(1,m3*n3);
y3=zeros(1,m3*n3);
z3=zeros(1,m3*n3);
for k=1:n3
for i=1:m3
z3(i+(k-1)*m3)=zmin3+(k-1)*(zmax3-zmin3)/(n3-1);
y3(i+(k-1)*m3)=ymin3+(i-1)*(ymax3-ymin3)/(m3-1);
end
end
clear k i
a3(m3,m3)=2;
a3((n3-1)*m3+1,(n3-1)*m3+1)=2;
a3(1,1)=3;
a3(n3*m3,n3*m3)=3;
for i=1:(n3-2)
a3(i*m3+1,i*m3+1)=4;
a3((i+1)*m3,(i+1)*m3)=4;
end
clear i
for j=2:(m3-1)
a3(j,j)=4;
a3((n3-1)*m3+j,(n3-1)*m3+j)=4;
end
clear j
for i=1:(n3-2)
for j=2:(m3-1)
a3(i*m3+j,i*m3+j)=6;
end
end
clear i j
a3=sparse(a3);
for i=1:(n3-1)*m3-1
b3(i,i+1)=-1;
end
clear i
for i=1:(n3-1)*m3
b3(i,i+m3)=-1;
end
clear i
for i=1:(n3-1)*m3-1
b3(i,i+m3+1)=-1;
end
clear i
for k=1:(n3-1)
for h=1:(n3-1)
b3(m3*k,m3*h+1)=0;
end
end
clear k h
for i=(n3-1)*m3+1:n3*m3-1
b3(i,i+1)=-1;
end
clear i
b3=sparse(b3);
b3=a3+b3'+b3;
clear a3
a3=sparse(b3);
clear b3
XY3=[x3',y3',z3'];
a4=zeros(m4*n4);
b4=zeros(m4*n4);
XY4=zeros(m4*n4,2);
x4=0*ones(1,m4*n4);
y4=zeros(1,m4*n4);
z4=zeros(1,m4*n4);
for k=1:n4
for i=1:m4
z4(i+(k-1)*m4)=zmin4+(k-1)*(zmax4-zmin4)/(n4-1);
y4(i+(k-1)*m4)=ymin4+(i-1)*(ymax4-ymin4)/(m4-1);
end
end
clear k i
a4(m4,m4)=2;
a4((n4-1)*m4+1,(n4-1)*m4+1)=2;
a4(1,1)=3;
a4(n4*m4,n4*m4)=3;
for i=1:(n4-2)
a4(i*m4+1,i*m4+1)=4;
a4((i+1)*m4,(i+1)*m4)=4;
end
clear i
for j=2:(m4-1)
a4(j,j)=4;
a4((n4-1)*m4+j,(n4-1)*m4+j)=4;
end
clear j
for i=1:(n4-2)
for j=2:(m4-1)
a4(i*m4+j,i*m4+j)=6;
end
end
clear i j
a4=sparse(a4);
for i=1:(n4-1)*m4-1
b4(i,i+1)=-1;
end
clear i
for i=1:(n4-1)*m4
b4(i,i+m4)=-1;
end
clear i
for i=1:(n4-1)*m4-1
b4(i,i+m4+1)=-1;
end
clear i
for k=1:(n4-1)
for h=1:(n4-1)
b4(m4*k,m4*h+1)=0;
end
end
clear k h
for i=(n4-1)*m4+1:n4*m4-1
b4(i,i+1)=-1;
end
clear i
b4=sparse(b4);
b4=a4+b4'+b4;
clear a4
a4=sparse(b4);
clear b4
XY4=[x4',y4',z4'];
a5=zeros(m5*n5);
b5=zeros(m5*n5);
XY5=zeros(m5*n5,2);
x5=2*ones(1,m5*n5);
y5=zeros(1,m5*n5);
z5=zeros(1,m5*n5);
for k=1:n5
for i=1:m5
z5(i+(k-1)*m5)=zmin5+(k-1)*(zmax5-zmin5)/(n5-1);
y5(i+(k-1)*m5)=ymin5+(i-1)*(ymax5-ymin5)/(m5-1);
end
end
clear k i
a5(m5,m5)=2;
a5((n5-1)*m5+1,(n5-1)*m5+1)=2;
a5(1,1)=3;
a5(n5*m5,n5*m5)=3;
for i=1:(n5-2)
a5(i*m5+1,i*m5+1)=4;
a5((i+1)*m5,(i+1)*m5)=4;
end
clear i
for j=2:(m5-1)
a5(j,j)=4;
a5((n5-1)*m5+j,(n5-1)*m5+j)=4;
end
clear j
for i=1:(n5-2)
for j=2:(m5-1)
a5(i*m5+j,i*m5+j)=6;
end
end
clear i j
a5=sparse(a5);
for i=1:(n5-1)*m5-1
b5(i,i+1)=-1;
end
clear i
for i=1:(n5-1)*m5
b5(i,i+m5)=-1;
end
clear i
for i=1:(n5-1)*m5-1
b5(i,i+m5+1)=-1;
end
clear i
for k=1:(n5-1)
for h=1:(n5-1)
b5(m5*k,m5*h+1)=0;
end
end
clear k h
for i=(n5-1)*m5+1:n5*m5-1
b5(i,i+1)=-1;
end
clear i
b5=sparse(b5);
b5=a5+b5'+b5;
clear a5
a5=sparse(b5);
clear b5
XY5=[x5',y5',z5'];
A1=a1;
xy1=XY1;
A2=a2;
xy2=XY2;
A3=a3;
xy3=XY3;
A4=a4;
xy4=XY4;
A5=a5;
xy5=XY5;
[i1,j1] = find(A1);
[ignore, p1] = sort(max(i1,j1));
i1=i1(p1);
j1=j1(p1);
[i2,j2] = find(A2);
[ignore, p2] = sort(max(i2,j2));
i2=i2(p2);
j2=j2(p2);
[i3,j3] = find(A3);
[ignore, p3] = sort(max(i3,j3));
i3=i3(p3);
j3=j3(p3);
[i4,j4] = find(A4);
[ignore, p4] = sort(max(i4,j4));
i4=i4(p4);
j4=j4(p4);
[i5,j5] = find(A5);
[ignore, p5] = sort(max(i5,j5));
i5=i5(p5);
j5=j5(p5);
% Create a long, NaN-separated list of line segments,
% rather than individual segments.
X1 = [ xy1(i1,1) xy1(j1,1) repmat(NaN,size(i1))]';
Y1 = [ xy1(i1,3) xy1(j1,3) repmat(NaN,size(i1))]';
Z1 = [ xy1(i1,2) xy1(j1,2) repmat(NaN,size(i1))]';
X2 = [ xy2(i2,1) xy2(j2,1) repmat(NaN,size(i2))]';
Y2 = [ xy2(i2,3) xy2(j2,3) repmat(NaN,size(i2))]';
Z2 = [ xy2(i2,2) xy2(j2,2) repmat(NaN,size(i2))]';
X3 = [ xy3(i3,1) xy3(j3,1) repmat(NaN,size(i3))]';
Y3 = [ xy3(i3,3) xy3(j3,3) repmat(NaN,size(i3))]';
Z3 = [ xy3(i3,2) xy3(j3,2) repmat(NaN,size(i3))]';
X4 = [ xy4(i4,1) xy4(j4,1) repmat(NaN,size(i4))]';
Y4 = [ xy4(i4,3) xy4(j4,3) repmat(NaN,size(i4))]';
Z4 = [ xy4(i4,2) xy4(j4,2) repmat(NaN,size(i4))]';
X5 = [ xy5(i5,1) xy5(j5,1) repmat(NaN,size(i5))]';
Y5 = [ xy5(i5,3) xy5(j5,3) repmat(NaN,size(i5))]';
Z5 = [ xy5(i5,2) xy5(j5,2) repmat(NaN,size(i5))]';
X1 = X1(:);
Y1 = Y1(:);
Z1 = Z1(:);
X2 = X2(:);
Y2 = Y2(:);
Z2 = Z2(:);
X3 = X3(:);
Y3 = Y3(:);
Z3 = Z3(:);
X4 = X4(:);
Y4 = Y4(:);
Z4 = Z4(:);
X5 = X5(:);
Y5 = Y5(:);
Z5 = Z5(:);
% Create the line properties string
cla;
if nargout==0,
subplot('position',[0.05,0.05,0.5,0.8]);
h1=plot3(X1,Y1,Z1);
hold on;
h2=plot3(X2,Y2,Z2);
hold on;
h3=plot3(X3,Y3,Z3);
hold on;
h4=plot3(X4,Y4,Z4);
hold on;
h5=plot3(X5,Y5,Z5);
else
X1out = X1;
Y1out = Y1;
Z1out = Z1;
X2out = X2;
Y2out = Y2;
Z2out = Z2;
X3out = X3;
Y3out = Y3;
Z3out = Z3;
X4out = X4;
Y4out = Y4;
Z4out = Z4;
X5out = X5;
Y5out = Y5;
Z5out = Z5;
end
if nargin>2
for k=1:nargin-3
s=varargin{k};
try
if isnumeric(varargin{k+1})
set(h1,s,varargin{k+1});
set(h2,s,varargin{k+1});
set(h3,s,varargin{k+1});
set(h4,s,varargin{k+1});
set(h5,s,varargin{k+1});
else
set(h1,s);
set(h2,s);
set(h3,s);
set(h4,s);
set(h5,s);
end
catch
end
end
end