当前位置: 首页 > 工具软件 > tf.Transform > 使用案例 >

tf.contrib.image.transform与opencv中PerspectiveTransform

谷飞星
2023-12-01

tensorflow中tf.contrib.image.transform函数可对图像做透视变换,用法如下

#读取图像
img=cv2.imread('/home/xp1/Pictures/004545.jpg')

input=tf.placeholder(dtype=np.uint8,shape=[375,500,3]) #高,宽,通道

src_points = np.array([[165., 270.], [400., 270.], [360., 125.], [400., 125.]], dtype="float32")
dst_points = np.array([[165., 270.], [400., 270.], [165., 30.], [400., 30.]], dtype="float32")

M = cv2.getPerspectiveTransform(src_points, dst_points)
T = M.reshape(1,-1).squeeze().tolist()
T = T[:-1]
#创建操作
trans_op=tf.contrib.image.transform(input, T)


#执行操作
with tf.Session() as sess:
    trans_img=sess.run(trans_op,feed_dict={input:img})
    cv2.imshow('img',trans_img)
cv2.waitKey()
cv2.destroyAllWindows()

opencv中等价的代码为

w,h,_ = img.shape

src_points = np.array([[165., 270.], [400., 270.], [360., 125.], [400., 125.]], dtype="float32")
dst_points = np.array([[165., 270.], [400., 270.], [165., 30.], [400., 30.]], dtype="float32")

M = cv2.getPerspectiveTransform(src_points, dst_points)

M = np.linalg.inv(M)

print(M)
out_img = cv2.warpPerspective(img,M,(h,w))
cv2.imshow("img",out_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

注意,在opencv中,需要对变换矩阵进行取逆操作

 类似资料: