tensorflow中tf.contrib.image.transform函数可对图像做透视变换,用法如下
#读取图像
img=cv2.imread('/home/xp1/Pictures/004545.jpg')
input=tf.placeholder(dtype=np.uint8,shape=[375,500,3]) #高,宽,通道
src_points = np.array([[165., 270.], [400., 270.], [360., 125.], [400., 125.]], dtype="float32")
dst_points = np.array([[165., 270.], [400., 270.], [165., 30.], [400., 30.]], dtype="float32")
M = cv2.getPerspectiveTransform(src_points, dst_points)
T = M.reshape(1,-1).squeeze().tolist()
T = T[:-1]
#创建操作
trans_op=tf.contrib.image.transform(input, T)
#执行操作
with tf.Session() as sess:
trans_img=sess.run(trans_op,feed_dict={input:img})
cv2.imshow('img',trans_img)
cv2.waitKey()
cv2.destroyAllWindows()
opencv中等价的代码为
w,h,_ = img.shape
src_points = np.array([[165., 270.], [400., 270.], [360., 125.], [400., 125.]], dtype="float32")
dst_points = np.array([[165., 270.], [400., 270.], [165., 30.], [400., 30.]], dtype="float32")
M = cv2.getPerspectiveTransform(src_points, dst_points)
M = np.linalg.inv(M)
print(M)
out_img = cv2.warpPerspective(img,M,(h,w))
cv2.imshow("img",out_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
注意,在opencv中,需要对变换矩阵进行取逆操作