Book website | STAT 157 Course at UC Berkeley | Latest version: v0.17.0
This open-source book represents our attempt to make deep learning approachable, teaching you the concepts, the context, and the code. The entire book is drafted in Jupyter notebooks, seamlessly integrating exposition figures, math, and interactive examples with self-contained code.
Our goal is to offer a resource that could
Descending through a Crowded Valley--Benchmarking Deep Learning Optimizers. R. Schmidt, F. Schneider, P. Hennig. International Conference on Machine Learning, 2021
Universal Average-Case Optimality of Polyak Momentum. D. Scieur, F. Pedregosan. International Conference on Machine Learning, 2020
2D Digital Image Correlation and Region-Based Convolutional Neural Network in Monitoring and Evaluation of Surface Cracks in Concrete Structural Elements. M. Słoński, M. Tekieli. Materials, 2020
GluonCV and GluonNLP: Deep Learning in Computer Vision and Natural Language Processing. J. Guo, H. He, T. He, L. Lausen, M. Li, H. Lin, X. Shi, C. Wang, J. Xie, S. Zha, A. Zhang, H. Zhang, Z. Zhang, Z. Zhang, S. Zheng, and Y. Zhu. Journal of Machine Learning Research, 2020
Detecting Human Driver Inattentive and Aggressive Driving Behavior Using Deep Learning: Recent Advances, Requirements and Open Challenges. M. Alkinani, W. Khan, Q. Arshad. IEEE Access, 2020
Diagnosing Parkinson by Using Deep Autoencoder Neural Network. U. Kose, O. Deperlioglu, J. Alzubi, B. Patrut. Deep Learning for Medical Decision Support Systems, 2020
Deep Learning Architectures for Medical Diagnosis. U. Kose, O. Deperlioglu, J. Alzubi, B. Patrut. Deep Learning for Medical Decision Support Systems, 2020
ControlVAE: Tuning, Analytical Properties, and Performance Analysis. H. Shao, Z. Xiao, S. Yao, D. Sun, A. Zhang, S. Liu, T. Abdelzaher.
Potential, challenges and future directions for deep learning in prognostics and health management applications. O. Fink, Q. Wang, M. Svensén, P. Dersin, W-J. Lee, M. Ducoffe. Engineering Applications of Artificial Intelligence, 2020
Learning User Representations with Hypercuboids for Recommender Systems. S. Zhang, H. Liu, A. Zhang, Y. Hu, C. Zhang, Y. Li, T. Zhu, S. He, W. Ou. ACM International Conference on Web Search and Data Mining, 2021
If you find this book useful, please star (★) this repository or cite this book using the following bibtex entry:
@article{zhang2021dive,
title={Dive into Deep Learning},
author={Zhang, Aston and Lipton, Zachary C. and Li, Mu and Smola, Alexander J.},
journal={arXiv preprint arXiv:2106.11342},
year={2021}
}
"In less than a decade, the AI revolution has swept from research labs to broad industries to every corner of our daily life. Dive into Deep Learning is an excellent text on deep learning and deserves attention from anyone who wants to learn why deep learning has ignited the AI revolution: the most powerful technology force of our time."
— Jensen Huang, Founder and CEO, NVIDIA
"This is a timely, fascinating book, providing with not only a comprehensive overview of deep learning principles but also detailed algorithms with hands-on programming code, and moreover, a state-of-the-art introduction to deep learning in computer vision and natural language processing. Dive into this book if you want to dive into deep learning!"
— Jiawei Han, Michael Aiken Chair Professor, University of Illinois at Urbana-Champaign
"This is a highly welcome addition to the machine learning literature, with a focus on hands-on experience implemented via the integration of Jupyter notebooks. Students of deep learning should find this invaluable to become proficient in this field."
— Bernhard Schölkopf, Director, Max Planck Institute for Intelligent Systems
This open source book has benefited from pedagogical suggestions, typo corrections, and other improvements from community contributors. Your help is valuable for making the book better for everyone.
Dear D2L contributors, please email your GitHub ID and name to d2lbook.en AT gmail DOT com so your name will appear on the acknowledgments. Thanks.
This open source book is made available under the Creative Commons Attribution-ShareAlike 4.0 International License. See LICENSE file.
The sample and reference code within this open source book is made available under a modified MIT license. See the LICENSE-SAMPLECODE file.
Chinese version | Discuss and report issues | Code of conduct | Other Information
安装d2l pytorch 版本 Anaconda python 3.9 pytorch 1.9 d2l-0.17.6-py3-none-any.whl安装失败 github/gitcode下载d2l-en-v0.17.6.zip pypi 经常抽风 pip\pip.ini [global] index-url = https://pypi.tuna.tsinghua.edu.cn/simple
Nom de fichier Publisher Sha1 SHA2 windows6.1-kb2709162-ia64.msu 99C7697130F4B3F4D8603C614343A27F5CBA7467 A2CC626317E0F84B73A0C2E5C7DC76ABAB7E379FCBB32CD05B66706CC9F2A74F windowsserver2003-kb2709162-x
SQL_ODPS-D2-离线数仓-5-开窗函数在sql中的实际应用.md --手动将dwd层数据导入到dws层 INSERT OVERWRITE TABLE dws_uv_detail_d PARTITION (ds,hh,mm) SELECT mid, user_id, version_code, version_name, lang, sourc
初学不太懂原理,先记录一下以防下回再次被卡住。 pip install d2l ——> pip install d2l pandas==1.5.3 好像是pandas版本不兼容,d2l包里的是1.2.4版本。 win11系统
动手学深度学习(Dive into Deep Learning,D2L.ai) 第一版:zh.D2L.ai | 第二版预览版:zh-v2.D2L.ai | 安装和使用书中源代码:第一版 第二版 | 当前版本: v2.0.0-alpha1 理解深度学习的最佳方法是学以致用。 本开源项目代表了我们的一种尝试:我们将教给读者概念、背景知识和代码;我们将在同一个地方阐述剖析问题所需的批判性思维、解决问题所
d2l-torch 首先感谢《动手学深度学习》的原作者及贡献者为我们提供了一本极其优秀的书籍。如果您对框架没有特定偏好或需求,不妨尝试MXNet,一款极其优秀的深度学习框架。 原书地址:http://zh.d2l.ai/,原书视频教程:B站,youtube 本书在原书(19年5月20日版本)基础上将所有代码改用 PyTorch 进行实现,并以注的形式对部分内容的进行了解释与扩展。因为 PyTorc
问题内容: 我遇到过,我不确定它到底在做什么。 例如: 作者为什么要在块关闭连接和垃圾收集器处理时输入? 问题答案: 真正归结为成为“好公民”(并且真正了解接口契约)。什么会做的是释放被持有的所有资源,这实质上意味着释放任何基础流,并给予Connection对象返回到其池(在的情况下你的连接管理器是一个多线程的一个)或释放连接管理器,以便它可以处理下一个要求。 如果您不使用,则实际发生的情况取决于
问题内容: 如何通过App Engine的URLFetch服务(在Java中)指定用于发出基本身份验证请求的用户名和密码? 看来我可以设置HTTP标头: Basic-Auth的适当标题是什么? 问题答案: 这是HTTP上的基本身份验证标头: 授权:基本的base64编码(用户名:password) 例如: 您将需要执行以下操作: 为此,您将需要一个base64编解码器api,例如Apache Co
问题内容: 将case语句更改为以下代码后,为什么以下代码无法编译 作品? 问题答案: 这是为了避免针对不同枚举类型进行比较的能力。 将它限制为 一种 类型(即 语句中的枚举值的类型)是有意义的。 更新 :实际上是为了保持二进制兼容性。以下是JLS 第13.4.9章中途引用的内容: 要求内联常量的一个原因是, 语句中的每个都需要常量,并且两个这样的常量值不能相同。编译器在编译时检查语句中是否有重复
问题内容: 我想在Google App Engine上创建一个RESTful应用。我想提供XML和JSON服务。我已经对Restlet,Resteasy和Jersey进行了简短的实验。除了Restlet中的一些简单示例之外,我在其中的任何方面都没有取得太大的成功。 您能否分享使用Java在Google App Engine上创建Restful Web应用程序的经验,或者对上述GAE工具包提供任何见