Deep_reinforcement_learning_Course

授权协议 Readme
开发语言 Python
所属分类 神经网络/人工智能、 机器学习/深度学习
软件类型 开源软件
地区 不详
投 递 者 杨彦君
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

Deep Reinforcement Learning Course

⚠️ The new version of Deep Reinforcement Learning Course starts on October the 2nd 2020. ➡️ More info here ⬅️

Syllabus

Chapter 1: Introduction to Deeep Reinforcement Learning

�� ARTICLE Introduction to Deep Reinforcement Learning

�� VIDEO Introduction to Deep Reinforcement Learning

Chapter 2: Q-learning with Taxi-v3 ��

�� ARTICLE: Q-Learning, let’s create an autonomous Taxi �� (Part 1/2)

VIDEO Q-Learning, let’s create an autonomous Taxi �� (Part 1/2)

�� [ARTICLE: Q-Learning, let’s create an autonomous Taxi �� (Part 2/2)] �� Friday ��

�� [VIDEO: Q-Learning, let’s create an autonomous Taxi �� (Part 2/2)] �� Friday ��

FROZENLAKE IMPLEMENTATION

�� Implementing a Q-learning agent that plays Taxi-v2 ��

Part 3: Deep Q-learning with Doom

�� ARTICLE // DOOM IMPLEMENTATION

�� Create a DQN Agent that learns to play Atari Space Invaders ��

Part 4: Policy Gradients with Doom

�� ARTICLE // CARTPOLE IMPLEMENTATION // DOOM IMPLEMENTATION

�� Create an Agent that learns to play Doom deathmatch

Part 3+: Improvments in Deep Q-Learning

�� ARTICLE// Doom Deadly corridor IMPLEMENTATION

�� Create an Agent that learns to play Doom Deadly corridor

Part 5: Advantage Advantage Actor Critic (A2C)

�� ARTICLE

�� Create an Agent that learns to play Sonic

Part 6: Proximal Policy Gradients

�� ARTICLE

��‍�� Create an Agent that learns to play Sonic the Hedgehog 2 and 3

Part 7: Curiosity Driven Learning made easy Part I

�� ARTICLE

Part 8: Random Network Distillation with PyTorch

��‍�� A trained RND agent that learned to play Montezuma's revenge (21 hours of training with a Tesla K80

Any questions ��‍��

If you have any questions, feel free to ask me:

�� : simonini.thomas.pro@gmail.com

Github: https://github.com/simoninithomas/Deep_reinforcement_learning_Course

�� : https://simoninithomas.github.io/deep-rl-course/

Twitter: @ThomasSimonini

Don't forget to follow me on twitter, github and Medium to be alerted of the new articles that I publish

How to help ��

3 ways:

  • Clap our articles and like our videos a lot:Clapping in Medium means that you really like our articles. And the more claps we have, the more our article is shared Liking our videos help them to be much more visible to the deep learning community.
  • Share and speak about our articles and videos: By sharing our articles and videos you help us to spread the word.
  • Improve our notebooks: if you found a bug or a better implementation you can send a pull request.

  •         在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习。有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准。如果说监督学习的目标是预测,那么强化学习就是决策,它通过对周围的环境不断的更新状态,给出奖励或者惩罚的措施,来不断调整并给出新的策略。简单来说,就像小时候你在不该吃零食的时间偷吃了零食,你妈妈知道了会对你做出惩罚,那么

  • https://zhuanlan.zhihu.com/p/20885568   Deep Reinforcement Learning深度增强学习可以说发源于2013年DeepMind的Playing Atari with Deep Reinforcement Learning 一文,之后2015年DeepMind 在Nature上发表了Human Level Control through De

相关阅读

相关文章

相关问答

相关文档