Machine-Learning-Andrew-Ng

授权协议 Readme
开发语言 Python
所属分类 神经网络/人工智能、 机器学习/深度学习
软件类型 开源软件
地区 不详
投 递 者 冯永长
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

Coursera Machine Learning Assignments in Matlab

Introduction


这是Coursera网站上,课程Machine Learning中算法在Matlab语言的实现,同样也可以参考斯坦福大学的计算机课程CS229

Attention:


  • 你可以在百度云上下载全套课程视频和相关文档;

Definition


  • "A computer program is said to learn from experience E with respect to some taskT and some performance measure P, if its performance on T, as measured by P, improves with experience E."-------------- Definition of Machine Learning by Tom Mitchell

Enviroment


  • Windows10
  • Matlab 2017b

Target


  • 掌握机器学习的算法原理与推理过程;
  • 掌握机器学习算法在Matlab语言的实现过程和细节;

Contents

  • README.md:说明文档

Exercise 1

  • Linear Regression
  • Linear Regression with multiple variables

Exercise 2

  • Logistic Regression
  • Logistic Regression with Regularization

Exercise 3

  • Multiclass Classification
  • Neural Networks Prediction fuction

Exercise 4

  • Neural Networks Learning

Exercise 5

  • Regularized Linear Regression
  • Bias vs. Variance

Exercise 6

  • Support Vector Machines
  • Spam email Classifier

Exercise 7

  • K-means Clustering
  • Principal Component Analysis

Exercise 8

  • Anomaly Detection
  • Recommender Systems

gaussianDemo

  • Simple Gaussian Process Regression

Acknowledge

你可以检查与修改我在github上的代码仓库,欢迎任何改进和讨论。

  • 1、Suppose you are training a logistic regression classier using stochastic gradient descent. You find that the cost (say,cost(θ,(x(i) ,y(i))), averaged over the last 500 examples), plotted as a functi

  • 1、You are working on a spam classification system using regularized logistic regression. “Spam” is a positive class (y = 1) and “not spam” is the negative class (y = 0). You have trained your classier

 相关资料
  • Coursera-Machine-Learning-Andrew-NG This is a repository of my coursera Machine Learning by Standford, Andrew NG course's assignments' solution This is all written in matlab.The datasets are also uplo

  • 学习意味着通过学习或经验获得知识或技能。 基于此,我们可以定义机器学习(ML)如下 - 它可以被定义为计算机科学领域,更具体地说是人工智能的应用,其为计算机系统提供了学习数据和从经验改进而无需明确编程的能力。 基本上,机器学习的主要焦点是允许计算机自动学习而无需人为干预。 现在问题是如何开始和完成这种学习? 它可以从数据的观察开始。 数据可以是一些示例,指令或一些直接经验。 然后在此输入的基础上,

  • Machine Learning This project provides a web-interface,as well as a programmatic-apifor various machine learning algorithms. Supported algorithms: Support Vector Machine (SVM) Support Vector Regressio

  • 深度学习 我们可以在Personal Computer上完成庞大的任务 深度学习是一种适应于各类问题的万能药 神经网络 神经网络出现于80年代,但当时计算机运行慢,数据集很小,神经网络不适用 现在神经网络回来了,因为能够进行GPU计算,可用使用的数据集也变大 分类 分类的一些讨论可以在这个项目里看到 Machine Learning不仅是Classification!但分类是机器学习的核心。 学会

  • Machine Learning Projects This repository contains mini projects in machine learning with jupyter notebook files.Go to the projects folder and see the readme for detailed instructions about the projec

  • Machine Learning for OpenCV This is the Jupyter notebook version of the following book: Michael Beyeler Machine Learning for OpenCV Intelligent Image Processing with Python 14 July 2017 Packt Publishi