Kubeflow 是谷歌发布的一个机器学习工具库,Kubeflow 项目旨在使 Kubernetes 上的机器学习变的轻松、便捷、可扩展,其目标不是重建其他服务,而是提供一种简便的方式找到最好的 OSS 解决方案。该库包含包含的清单用于创建:
用于创建和管理交互式 Jupyter notebook 的 JupyterHub
可配置为使用 CPU 或 GPU,并通过单一设置调整至单个集群大小的 TensorFlow 训练控制器(Tensorflow Training Controller)
TF 服务容器(TF Serving container)
该文档详述在可运行 Kubernetes 的任何环境中运行 kubeflow 项目的步骤。
Kubeflow 目标
其目标是通过发挥 Kubernetes 的特长,从而更便捷地运用机器学习:
在不同的基础设施上实现简单、可重复的便携式部署(笔记本<-> ML 装备 <-> 训练集群 <-> 生产集群)
部署和管理松散耦合的微服务
根据需求进行扩展
由于机器学习从业者可供使用的工具非常多,所以核心目标是你可以根据需求自定义堆栈,并让系统处理无赖的东西」。虽然我们已开始使用少许技术,但我们正在与很多不同项目展开合作,以涵盖更多额外的工具。最终,我们希望给出一组简单的清单,只要在 Kubernetes 已运行的地方便能轻松使用 ML 堆栈,并可根据部署的集群实现自我配置。
设置
该文档假设你已经有一个可用的 Kubernetes 集群。对于具体的 Kubernetes 安装,可能需要额外的配置。
Minikube
Minikube 是一个让我们在本地运行 Kubernetes 更方便的工具。Minikube 会在笔记本的虚拟环境中运行一个单结点 Kubernetes 集群,从而令用户可以在该环境中试验它或执行日常的开发工作。下面的步骤适用于 Minikube 集群,本文档当前使用的是最新版 0.23.0,我们必须配置 Kubectl 才能访问 Minikube。
谷歌 Kubernetes 引擎
谷歌 Kubernetes 引擎是一个可用于部署容器化应用的托管环境。它融合了提高开发生产力、有效利用资源、自动化运维和开源灵活性方面的最新创新技术,能够加快模型进入市场以及迭代的时间。
谷歌在容器中运行生产工作负载的经验已超过 15 年,他们将在此期间学到的经验知识融入到了 Kubernetes 中。因此,Kubernetes 是行业领先的开源容器协调系统,为 Kubernetes Engine 提供技术支持。
如果读者正在使用谷歌 Kubernetes 引擎,在创建清单前,我们应该先授予自己所要求的 RBAC 角色,因而才能创建或编辑其它 RBAC 角色。
kubectl create clusterrolebinding default-admin --clusterrole=cluster-admin --user=user@gmail.com
1、用kubeadm安装好k8s集群 本实验: KubeMaster 10.4.7.20 KubeNode 10.4.7.21 2、确认机器的配置 (1)8个处理器,每个处理器2核,共16G内存 (2)查看root下的centos_kubeflowmaster-root下有超过100G足够的磁盘空间 [root@KubeflowMaster ~]# fdisk -l Disk /dev/sda:
偏差与方差 《机器学习》 2.5 偏差与方差 - 周志华 偏差与方差分别是用于衡量一个模型泛化误差的两个方面; 模型的偏差,指的是模型预测的期望值与真实值之间的差; 模型的方差,指的是模型预测的期望值与预测值之间的差平方和; 在监督学习中,模型的泛化误差可分解为偏差、方差与噪声之和。 偏差用于描述模型的拟合能力; 方差用于描述模型的稳定性。 导致偏差和方差的原因 偏差通常是由于我们对学习算法做了错
机器学习 概述 机器学习(Machine Learning,ML) 是使用计算机来彰显数据背后的真实含义,它为了把无序的数据转换成有用的信息。是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及
机器学习(Machine Learning,ML) 是使用计算机来彰显数据背后的真实含义,它为了把无序的数据转换成有用的信息。
本文向大家介绍基于Python和Scikit-Learn的机器学习探索,包括了基于Python和Scikit-Learn的机器学习探索的使用技巧和注意事项,需要的朋友参考一下 你好,%用户名%! 我叫Alex,我在机器学习和网络图分析(主要是理论)有所涉猎。我同时在为一家俄罗斯移动运营商开发大数据产品。这是我第一次在网上写文章,不喜勿喷。 现在,很多人想开发高效的算法以及参加机器学习的竞赛。所以他
随着 AlphaGo 在人机大战中一举成名,关于机器学习的研究开始广受关注,数据科学家也一跃成为 21世纪最性感的职业。关于机器学习和神经网络的广泛应用虽然兴起不久,但是对这两个密切关联的领域的研究其实已经持续了好几十年,早已形成了系统化的知识体系。对于想要踏入机器学习领域的初学者而言,理论知识的获取并非难事。
机器学习即Machine Learning,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。目的是让计算机模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断完善自身的性能。简单来讲,机器学习就是人们通过提供大量的相关数据来训练机器。
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。
本文向大家介绍关于机器学习中的强化学习,什么是Q学习?,包括了关于机器学习中的强化学习,什么是Q学习?的使用技巧和注意事项,需要的朋友参考一下 Q学习是一种强化学习算法,其中包含一个“代理”,它采取达到最佳解决方案所需的行动。 强化学习是“半监督”机器学习算法的一部分。将输入数据集提供给强化学习算法时,它会从此类数据集学习,否则会从其经验和环境中学习。 当“强化代理人”执行某项操作时,将根据其是否