Matlab-GAN

授权协议 MIT License
开发语言 Python
所属分类 神经网络/人工智能、 机器学习/深度学习
软件类型 开源软件
地区 不详
投 递 者 林运浩
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

Matlab-GAN

Collection of MATLAB implementations of Generative Adversarial Networks (GANs) suggested in research papers. This repository is greatly inspired by eriklindernoren's repositories Keras-GAN and PyTorch-GAN, and contains codes to investigate different architectures of GAN models.

Configuration

To run the following codes, users should have the following packages,

  • MATLAB 2019b
  • Deep Learning Toolbox
  • Parallel Computing Toolbox (optional for GPU usage)

Datasets

Table of Contents

Outputs

GAN
-Generator, Discriminator
LSGAN
-Least Squares Loss
DCGAN
-Deep Convolutional Layer
CGAN
-Condition Embedding
ACGAN
-Classification
InfoGAN mnist
-Continuous, Discrete Codes
AAE
-Encoder, Decoder, Discriminator
Pix2Pix
-Pair and Segments checking
-Decovolution and Skip Connections
WGAN SGAN CycleGAN
-Instance Normalization
-Mutli-agent Learning
InfoGAN CelebA

References

  • Y. LeCun and C. Cortes, “MNIST handwritten digitdatabase,” 2010. [MNIST]
  • J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, andL. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” inCVPR09, 2009. [Apple2Orange (ImageNet)]
  • R. Tyleček and R. Šára, “Spatial pattern templates forrecognition of objects with regular structure,” inProc.GCPR, (Saarbrucken, Germany), 2013. [Facade]
  • Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learn-ing face attributes in the wild,” inProceedings of In-ternational Conference on Computer Vision (ICCV),December 2015. [CelebA]
  • Goodfellow, Ian J. et al. “Generative Adversarial Networks.” ArXiv abs/1406.2661 (2014): n. pag. (GAN)
  • Radford, Alec et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.” CoRR abs/1511.06434 (2015): n. pag. (DCGAN)
  • Denton, Emily L. et al. “Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks.” ArXiv abs/1611.06430 (2017): n. pag. (CGAN)
  • Odena, Augustus et al. “Conditional Image Synthesis with Auxiliary Classifier GANs.” ICML (2016). (ACGAN)
  • Chen, Xi et al. “InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.” NIPS (2016). (InfoGAN)
  • Makhzani, Alireza et al. “Adversarial Autoencoders.” ArXiv abs/1511.05644 (2015): n. pag. (AAE)
  • Isola, Phillip et al. “Image-to-Image Translation with Conditional Adversarial Networks.” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016): 5967-5976. (Pix2Pix)
  • J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpairedimage-to-image translation using cycle-consistent ad-versarial networks,” 2017. (CycleGAN)
  • Arjovsky, Martín et al. “Wasserstein GAN.” ArXiv abs/1701.07875 (2017): n. pag. (WGAN)
  • Odena, Augustus. “Semi-Supervised Learning with Generative Adversarial Networks.” ArXiv abs/1606.01583 (2016): n. pag. (SGAN)
  • GAN-MATLAB clc clear %% 构造真实训练样本 60000个样本 1*784维(28*28展开) load mnist_uint8; train_x = double(train_x(1:60000,:)) / 255; % 真实样本认为为标签 [1 0]; 生成样本为[0 1]; train_y = double(ones(size(train_x,1),

  • Y. LeCun and C. Cortes, “MNIST handwritten digitdatabase,” 2010. [MNIST] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, andL. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” inCVPR09, 2

  • GAN网络就是生成对抗网络,顾名思义其主要有生成器和辨别器两部分,好比矛和盾.生成器生成的数据试图骗过辨别器,训练后的辨别器用来判定生成器生成的数据是否真实. 类似与图灵测试,判别器是图灵测试题目和结果,而生成器是机器人或人. 先上代码: clear; clc; % -----------加载数据 load('mnist_uint8', 'train_x'); train_x = double(r

 相关资料
  • MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据 分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。 MATLAB和Mathematica、Maple并 称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘

  • MATLAB code for reading and writing CIFTI files, v2 This library is compatible with the CIFTI-2 format, withoutexternally installed dependencies (except that CIFTI-1 files requirewb_command for conver

  • Zaf-Matlab Zafar's Audio Functions in Matlab for audio signal analysis. Files: zaf.m: Matlab class with the audio functions. examples.ipynb: Jupyter notebook with some examples. audio_file.wav: audio

  • BIDS for MATLAB / Octave This repository aims at centralising MATLAB/Octave tools to interact with datasets conforming to the BIDS (Brain Imaging Data Structure) format. For more information about BID

  • REPET-Matlab REPeating Pattern Extraction Technique (REPET) in Matlab for audio source separation. Repetition is a fundamental element in generating and perceiving structure. In audio, mixtures are of

  • snopt-matlab (version 3.0) This is version 3.0 of the Matlab interface for sparse nonlinear optimization software SNOPT. Requires the SNOPT software package. Changes from version 2.5: all-in-one calls