(latest release)(all releases)
The Unity Machine Learning Agents Toolkit (ML-Agents) is an open-sourceproject that enables games and simulations to serve as environments fortraining intelligent agents. We provide implementations (based on PyTorch)of state-of-the-art algorithms to enable game developers and hobbyists to easilytrain intelligent agents for 2D, 3D and VR/AR games. Researchers can also use theprovided simple-to-use Python API to train Agents using reinforcement learning,imitation learning, neuroevolution, or any other methods. These trained agents can beused for multiple purposes, including controlling NPC behavior (in a variety ofsettings such as multi-agent and adversarial), automated testing of game buildsand evaluating different game design decisions pre-release. The ML-AgentsToolkit is mutually beneficial for both game developers and AI researchers as itprovides a central platform where advances in AI can be evaluated on Unity’srich environments and then made accessible to the wider research and gamedeveloper communities.
See our ML-Agents Overview page for detaileddescriptions of all these features.
Our latest, stable release is Release 18
. Clickhereto get started with the latest release of ML-Agents.
The table below lists all our releases, including our main
branch which isunder active development and may be unstable. A few helpful guidelines:
com.unity.ml-agents
package is verifiedfor Unity 2020.1 and later. Verified packages releases are numbered 1.0.x.Version | Release Date | Source | Documentation | Download | Python Package | Unity Package |
---|---|---|---|---|---|---|
main (unstable) | -- | source | docs | download | -- | -- |
Release 18 | June 9, 2021 | source | docs | download | 0.27.0 | 2.1.0 |
Verified Package 1.0.8 | May 26, 2021 | source | docs | download | 0.16.1 | 1.0.8 |
Release 17 | April 22, 2021 | source | docs | download | 0.26.0 | 2.0.0 |
Release 16 | April 13, 2021 | source | docs | download | 0.25.1 | 1.9.1 |
Release 15 | March 17, 2021 | source | docs | download | 0.25.0 | 1.9.0 |
Verified Package 1.0.7 | March 8, 2021 | source | docs | download | 0.16.1 | 1.0.7 |
Release 14 | March 5, 2021 | source | docs | download | 0.24.1 | 1.8.1 |
Release 13 | February 17, 2021 | source | docs | download | 0.24.0 | 1.8.0 |
If you are a researcher interested in a discussion of Unity as an AI platform,see a pre-print of ourreference paper on Unity and the ML-Agents Toolkit.
If you use Unity or the ML-Agents Toolkit to conduct research, we ask that youcite the following paper as a reference:
Juliani, A., Berges, V., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C.,Gao, Y., Henry, H., Mattar, M., Lange, D. (2020). Unity: A General Platform forIntelligent Agents. arXiv preprintarXiv:1809.02627.https://github.com/Unity-Technologies/ml-agents.
We have a Unity Learn course,ML-Agents: Hummingsbird,that provides a gentle introduction to Unity and the ML-Agents Toolkit.
We've also partnered withCodeMonkeyUnity to create aseries of tutorial videoson how to implement and use the ML-Agents Toolkit.
We have also published a series of blog posts that are relevant for ML-Agents:
The ML-Agents Toolkit is an open-source project and we encourage and welcomecontributions. If you wish to contribute, be sure to review ourcontribution guidelines andcode of conduct.
For problems with the installation and setup of the ML-Agents Toolkit, ordiscussions about how to best setup or train your agents, please create a newthread on theUnity ML-Agents forum and makesure to include as much detail as possible. If you run into any other problemsusing the ML-Agents Toolkit or have a specific feature request, pleasesubmit a GitHub issue.
Please tell us which samples you would like to see shipped with the ML-Agents Unitypackage by replying tothis forum thread.
Your opinion matters a great deal to us. Only by hearing your thoughts on theUnity ML-Agents Toolkit can we continue to improve and grow. Please take a fewminutes tolet us know about it.
For any other questions or feedback, connect directly with the ML-Agents team atml-agents@unity3d.com.
In order to improve the developer experience for Unity ML-Agents Toolkit, we have added in-editor analytics.Please refer to "Information that is passively collected by Unity" in theUnity Privacy Policy.
20与19的PushBlock.yaml一样:https://github.com/Unity-Technologies/ml-agents/blob/develop/config/ppo/PushBlock.yaml 下载后的配置文件路径在 E:\ml-agents-release_19\config\ppo\PushBlock.yaml 目录 1.配置文件 2. 配置文件解析 2.1 超参数
Designing a Learning Environment 本节将介绍设计学习环境的一般性建议,概述 ML-Agents Unity SDK 中关与场景设置相关的方面。 关于 Agent 设计将在 Designing Agents 章节中专门阐述(包含设计Agent,观测,行为和奖励,为Multi-Agent场景定义团队和模仿学习),不在本节做详细介绍。 为了帮助理解 ML-Agents T
Unity ML-agents 参数设置解明 作者:Dr.Doggo Unity 是全球最受欢迎的游戏开发引擎之一,有大量的游戏开发者在使用Unity开发他们的游戏。在这个AI、大数据等流行词遍布各行各业的时代,Unity也没有被潮流抛下,推出了他们自己的基于深度强化学习来训练游戏AI的工具包Unity ML-agents。这个工具包功能丰富,十分强大。可以帮助你在你的游戏内实现一个新的AI算法,
Unity 官方github主页上ml-agents 文档,传送门是: (插件在正式发布后,文档肯定会放到 https://docs.unity3d.com/Manual/index.html 中) 中文: https://github.com/Unity-Technologies/ml-agents/tree/master/docs/localized/zh-CN 英文: https://git
ML-Agents是Unity开发智能AI的利器,但是学习曲线相对陡峭,需要一些机器学习算法的理解,经过使用训练模式、好奇心模式的经历,总结一些使用技巧,供爱好者参考。 1.训练模式是老师带学生的模式,玩家通过操作AI,与Agents AI具有相同的参数,只不过用人工替代了电脑大脑的控制和判断,也就是Actions的决策选择。人工的操作不但能让AI学习移动和一些操作,AI还能继续使用加强学习的算法
1 前言 本文写于2020年1月31日,读者看到此文时,环境所需要的各部件可能已经有过多次版本迭代,安装方法有所差异。因此本文只依照前人的文章,列出作者在该时间点所遇到的问题。用以记录同时提供参考。 注意:在进行搭建前最好先查一下TensorFlow版本配套关系表(包括cudnn、cuda、Python版本),选择一个测试有效的稳定搭配。这样可以避免很多错误。 2 参考文档 官方文档(链接: Un
https://github.com/Unity-Technologies/ml-agents/blob/0.8.1/docs/Installation-Windows.md unity官网指导搭建教程,请参考。 1.安装Anaconda 3.5.1.0版本 2.装完运行anaconda配置环境,运行命令 pip install mlagents 3.pip install tensorflow=
PHP-ml 是 PHP 的机器学习库。同时包含算法,交叉验证,神经网络,预处理,特征提取等。 PHP-ML 要求 PHP >= 7.0。 示例 简单的分类示例: use Phpml\Classification\KNearestNeighbors;$samples = [[1, 3], [1, 4], [2, 4], [3, 1], [4, 1], [4, 2]];$labels = ['a',
Machine Learning Foundations This repo is home to the code that accompanies Jon Krohn's Machine Learning Foundations curriculum, which provides a comprehensive overview of all of the subjects — across
Machine Learning Notebooks This project aims at teaching you the fundamentals of Machine Learning inpython. It contains the example code and solutions to the exercises in my O'Reilly book Hands-on Mac
项目介绍 此项目是机器学习、NLP面试中常考到的知识点和代码实现,也是作为一个算法工程师必会的理论基础知识。 既然是以面试为主要目的,亦不可以篇概全,请谅解,有问题可提出。 此项目以各个模块为切入点,让大家有一个清晰的知识体系。 此项目亦可拿来常读、常记以及面试时复习之用。 每一章里的问题都是面试时有可能问到的知识点,如有遗漏可联系我进行补充,结尾处都有算法的实战代码案例。 思维导图,请关注 AI
clj-ml A machine learning library for Clojure built on top of Weka and friends. This library (specifically, some dependencies) requires Java 1.7+. Installation Installing from Clojars [cc.artifice/clj
_ .-') .-') _ .-') _ ('-. ( '.( OO )_ ( OO ) ) ( OO) ) _( OO) ,--. ,--.),--. ,--./ ,--,