deep-listening

Deep Learning experiments for audio classification
授权协议 Readme
开发语言 Python
所属分类 神经网络/人工智能、 机器学习/深度学习
软件类型 开源软件
地区 不详
投 递 者 慕容念
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

deep-listening

Deep learning experiments for audio classification

A full write-up, including technical explanations and design decisions, as well as a summary of results achieved can be found within the associated Project Report.


This project consists of several Jupyter notebooks that implement deep learning audio classifiers.

1-us8k-ffn-extract-explore.ipynb

  • this notebook contains code to extract and visualise audio files from the UrbanSound8K data set
  • the feature extraction process uses audio processing metrics from the librosa library, which reduces each recording to 193 data points
  • as the audio information is highly abstracted, (we can not process successive frames using a receptive field), these features are intended to be fed into a feed-forward neural network (FFN)

2-us8k-ffn-train-predict.ipynb

  • this notebook contains the code to load previously extracted features and feed them into a 3-layer FFN, implemented using Tensorflow and Keras
  • also included is some code to evaluate model performance, and to generate predictions from individual samples, demonstrating how a trained model would be used to identify the nature of live recordings

3-us8k-cnn-extract-train.ipynb

  • this notebook extracts audio features suitable for input into a classic 2-layer Convolutional Neural Network (CNN)
  • much more of the audio data is preserved in this approach, as the saved numpy feature data is over 2GB I haven't included it with this repository, but you can use the code in this notebook to extract it from the original UrbanSound8K data set

4-us8k-cnn-salamon.ipynb

  • this notebook implements an alternative CNN, similar to one described by Salamon and Bello

5-ffbird-cnn.ipynb

  • this notebook uses the Salamon and Bello CNN to process the FreeField1010 data set of field recordings, with the goal of recognising the presence of birdsong.
  • the data set is not part of this repository, so if you want to run this code you'll need to download the data yourself (see instructions in the notebook)

7-us8k-rnn-extract-train.ipynb


Do get in touch if you've any questions, (me @ jaroncollis . com)

  • const util = require('util') console.log(('inspect db 1 is=',util.inspect(db, {showHidden: false, depth: null}))) console.log(('inspect db 2 is=',util.inspect(db, false, null, true /* enable colors *

  • Notes from stanford CS231N online course. I am labelling the image while listening to the online course. stride, filiter, pad input: 7x7 F:filter:3x3 stride:N 1 padding:k OUTPUT=(7-F)/stride+1=(7-3)/1

 相关资料
  • DEEP(Digital Enterprise End-to-end Platform)是由 AWS 支持的成本低,维护成本低的数字化平台。帮助企业开发人员提高工作效率。 使用DEEP Framework,开发人员可以立即使用: 简化的“类似于生产”的开发环境 使用微服务架构的企业级平台 零发展几乎无限的可扩展性(又名无服务器计算) 来自云提供商(例如AWS,GCP等)的Web服务的抽象使用

  • 人工神经网络(ANN)是一种高效的计算系统,其中心主题借鉴了生物神经网络的类比。 神经网络是机器学习的一种模型。 在20世纪80年代中期和90年代初期,在神经网络中进行了许多重要的建筑改进。 在本章中,您将了解有关深度学习的更多信息,这是一种人工智能的方法。 深度学习源自十年来爆炸性的计算增长,成为该领域的一个重要竞争者。 因此,深度学习是一种特殊的机器学习,其算法受到人脑结构和功能的启发。 机器

  • 本教程的前四章旨在为初学者提供IntelliJ的基本概述。 本节深入探讨了IntelliJ,并讨论了有关项目,其格式以及其他内容的更多信息。 了解项目 项目是您正在使用的应用程序或软件。 它可以包含多个模块,类,库,配置等。 它是层次结构中最顶层的元素。 了解模块 模块在“项目”下面有一个梯级。 模块是一个独立的实体,可以独立于其他模块进行编译,调试和运行。 单个项目可以包含多个模块。 您可以随时

  • New books available for subscription Deep Diamond Adopt your pet function and become a patron. Deep Diamond is a Clojure library for fast tensors and neural network related computations based on the h

  • deep-clean A Kotlin script that nukes all build caches from Gradle/Android projects.Useful when Gradle or the IDE let you down �� �� h/t to @Takhion for the original idea, and to@holgerbrandl for KScr

  • DEEP Framework DEEP Framework is a Full-Stack JavaScript Framework for building cloud-native web applications. This framework is a core component of a larger ecosystem, calledDigital Enterprise End-to