By Yann Bayle (Website, GitHub) from LaBRI (Website, Twitter), Univ. Bordeaux (Website, Twitter), CNRS (Website, Twitter) and SCRIME (Website).
TL;DR Non-exhaustive list of scientific articles on deep learning for music: summary (Article title, pdf link and code), details (table - more info), details (bib - all info)
The role of this curated list is to gather scientific articles, thesis and reports that use deep learning approaches applied to music.The list is currently under construction but feel free to contribute to the missing fields and to add other resources! To do so, please refer to the How To Contribute section.The resources provided here come from my review of the state-of-the-art for my PhD Thesis for which an article is being written.There are already surveys on deep learning for music generation, speech separation and speaker identification.However, these surveys do not cover music information retrieval tasks that are included in this repository.
A human-readable table summarized version if displayed in the file dl4m.tsv. All details for each article are stored in the corresponding bib entry in dl4m.bib. Each entry has the regular bib field:
author
year
title
journal
or booktitle
Each entry in dl4m.bib also displays additional information:
link
- HTML link to the PDF filecode
- Link to the source code if availablearchi
- Neural network architecturelayer
- Number of layerstask
- The proposed tasks studied in the articledataset
- The names of the dataset useddataaugmentation
- The type of data augmentation technique usedtime
- The computation timehardware
- The hardware usednote
- Additional notes and informationrepro
- Indication to what extent the experiments are reproduciblePlease refer to the advice_review.md file.
Contributions are welcome!Please refer to the CONTRIBUTING.md file.
How are the articles sorted?
The articles are first sorted by decreasing year (to keep up with the latest news) and then alphabetically by the main author's family name.
Why are preprint from arXiv included in the list?
I want to have exhaustive research and the latest news on DL4M. However, one should take care of the information provided in the articles currently in review. If possible you should wait for the final accepted and peer-reviewed version before citing an arXiv paper. I regularly update the arXiv links to the corresponding published papers when available.
How much can I trust the results published in an article?
The list provided here does not guarantee the quality of the articles. You should either try to reproduce the experiments described or submit a request to ReScience. Use one article's conclusion at your own risks.
A list of useful acronyms used in deep learning and music is stored in acronyms.md.
The list of conferences, journals and aggregators used to gather the proposed materials is stored in sources.md.
If you use the information contained in this repository, please let us know! This repository is cited by:
You are free to copy, modify, and distribute Deep Learning for Music (DL4M) with attribution under the terms of the MIT license. See the LICENSE file for details.This project use another projects and you may refer to them for appropriate license information :
初识deep learning的时候,经常只是把它看成一种更好一些的机器学习分类算法而已;实际上,也可以用一个时兴的说法——它是一种“像人脑一样的”神经元计算。前一种说法大大低估了深度学习可以胜任的应用类型;而后一种说法又言过其实的认为它的能力已经超出了普通的人工智能,基于它的应用已经可以自如的处理实际问题了。 可能对于基于深度学习应用更为恰当一些的认识角度是——它改善了人机交互界面。深度学习系统
《Brief History of Machine Learning》 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、Deep Learning. 《Deep Learning in Neural Networks: An Overview》 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本《神经网络与
版权声明:本文为博主原创文章,未经博主允许不得转载。 Free Online Books Deep Learning by Yoshua Bengio, Ian Goodfellow and Aaron Courville (05/07/2015) Neural Networks and Deep Learning by Michael Nielsen (Dec 2014) Deep Learni
机器学习(Machine Learning)&深度学习(Deep Learning)资料 機器學習、深度學習方面不錯的資料,轉載。 原作:https://github.com/ty4z2008/Qix/blob/master/dl.md 原作作者會不斷更新,本文更新至2014-12-21 《Brief History of Machine Learning》 介绍:
初识deep learning的时候,经常只是把它看成一种更好一些的机器学习分类算法而已;实际上,也可以用一个时兴的说法——它是一种“像人脑一样的”神经元计算。前一种说法大大低估了深度学习可以胜任的应用类型;而后一种说法又言过其实的认为它的能力已经超出了普通的人工智能,基于它的应用已经可以自如的处理实际问题了。 可能对于基于深度学习应用更为恰当一些的认识角度是——它改善了人机交互界面。深度学习系统
Free Online Books Deep Learning by Yoshua Bengio, Ian Goodfellow and Aaron Courville (05/07/2015) Neural Networks and Deep Learning by Michael Nielsen (Dec 2014) Deep Learning by Microsoft Research (2
Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools Miscellaneous Contributing Books Deep Learning by
Awesome - Most Cited Deep Learning Papers [Notice] This list is not being maintained anymore because of the overwhelming amount of deep learning papers published every day since 2017. A curated list o
人工神经网络(ANN)是一种高效的计算系统,其中心主题借鉴了生物神经网络的类比。 神经网络是机器学习的一种模型。 在20世纪80年代中期和90年代初期,在神经网络中进行了许多重要的建筑改进。 在本章中,您将了解有关深度学习的更多信息,这是一种人工智能的方法。 深度学习源自十年来爆炸性的计算增长,成为该领域的一个重要竞争者。 因此,深度学习是一种特殊的机器学习,其算法受到人脑结构和功能的启发。 机器
深度学习 我们可以在Personal Computer上完成庞大的任务 深度学习是一种适应于各类问题的万能药 神经网络 神经网络出现于80年代,但当时计算机运行慢,数据集很小,神经网络不适用 现在神经网络回来了,因为能够进行GPU计算,可用使用的数据集也变大 分类 分类的一些讨论可以在这个项目里看到 Machine Learning不仅是Classification!但分类是机器学习的核心。 学会
When Bitcoin meets Artificial Intelligence Exploiting Bitcoin prices patterns with Deep Learning. Like OpenAI, we train our models on raw pixel data. Exactly how an experienced human would see the cur
Deep Learning Specialization Projects from the Deep Learning Specialization from deeplearning.ai offered by Coursera. Instructor: Andrew Ng Master Deep Learning and Break Into AI If you want to break