MLDB 是一个用于机器学习的开源数据库。你可以随意安装它,并通过 RESTful API 发送命令以存储数据,使用 SQL 探索它,然后训练机器学习模型并将它们作为 APIs 公开。
MLDB 使用函数应用于机器学习模型,这些函数由训练过程参数化输出,训练过程在包含训练数据的数据集上运行。 函数也可用于 SQL 查询或作为 REST 端点。
Kubernetes 在大数据与机器学习中的实践案例。
Kubeflow 是 Google 发布的用于在 Kubernetes 集群中部署和管理 tensorflow 任务的框架。主要功能包括 用于管理 Jupyter 的 JupyterHub 服务 用于管理训练任务的 Tensorflow Training Controller 用于模型服务的 TF Serving 容器 部署 部署之前需要确保 一套部署好的 Kubernetes 集群或者 Mini
Kubernetes 从 v1.8 开始支持原生的Apache Spark应用(需要Spark支持Kubernetes,比如v2.2.0-kubernetes-0.4.0),可以通过 spark-submit 命令直接提交Kubernetes任务。比如计算圆周率 bin/spark-submit --deploy-mode cluster --class org.apache.spark.
Python 有着海量的可用于数据分析、统计以及机器学习的库,这使得 Python 成为很多数据科学家所选择的语言。 下面我们列出了一些被广泛使用的机器学习及其他数据科学应用的 Python 包。 Scipy 技术栈 Scipy 技术栈由一大批在数据科学中被广泛使用的核心辅助包构成,可用于统计分析与数据可视化。由于其丰富的功能和简单易用的特性,这一技术栈已经被视作实现大多数数据科学应用的必备品了。
主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 致谢 前言 我们要求把这些课程的所有Notes,Slides以及作者强烈推荐的论文看懂看明白,并完成所有的老师布置的习题,而推荐的书籍是不做要求的,如果有些书籍是需要看完的,我们会进行额外的说明。 课程列表 课程 机构 参考书 Notes等其他资
机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。 机器学习算法 _图片来自scikit-learn_。 机器学习全景图 _图片来自http://www.shivonzilis.com/_。
机器学习与人工智能学习笔记,包括机器学习、深度学习以及常用开源框架(Tensorflow、PyTorch)等。
“三个臭皮匠顶个诸葛亮”。集成学习就是利用了这样的思想,通过把多分类器组合在一起的方式,构建出一个强分类器;这些被组合的分类器被称为基分类器。事实上,随机森林就属于集成学习的范畴。通常,集成学习具有更强的泛化能力,大量弱分类器的存在降低了分类错误率,也对于数据的噪声有很好的包容性。