three.js是JavaScript编写的WebGL第三方库。提供了非常多的3D显示功能。Three.js 是一款运行在浏览器中的 3D 引擎,你可以用它创建各种三维场景,包括了摄影机、光影、材质等各种对象。
下载地址: http://threejs.org/
首先创建一个HTML文件,引入three.js引擎包.
<!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title>Three.js实现3D空间粒子效果</title> <style type="text/css"> body{ background-color:#000000; margin:0px; overflow:hidden; } </style> <script src="scripts/three.js"></script> </head> <body > </body> </html>
声明全局变量
//定义应用所需的组件:相机,场景,渲染器 var camera, scene, renderer; //跟踪鼠标的位置 var mouseX = 0, mouseY = 0; //定义存储粒子的数组 var particles = [];
相机:
OpenGL(WebGL)中、三维空间中的物体投影到二维空间的方式中,存在透视投影和正投影两种相机。
透视投影就是、从视点开始越近的物体越大、远处的物体绘制的较小的一种方式、和日常生活中我们看物体的方式是一致的。
正投影就是不管物体和视点距离,都按照统一的大小进行绘制、在建筑和设计等领域需要从各个角度来绘制物体,因此这种投影被广泛应用。
在 Three.js 也能够指定透视投影和正投影两种方式的相机。
场景:
场景就是一个三维空间。 用 [Scene] 类声明一个叫 [scene] 的对象。
渲染器:
三维空间里的物体映射到二维平面的过程被称为三维渲染。 一般来说我们都把进行渲染的操作叫做渲染器。
数据初始化
//数据初始化 function init(){ //相机参数: //四个参数值分别代表:视野角:fov 纵横比:aspect 相机离视体最近的距离:near 相机离视体最远的距离:far camera = new THREE.PerspectiveCamera(80, window.innerWidth / window.innerHeight, 1, 4000 ); //设置相机位置,默认位置为:0,0,0. camera.position.z = 1000; //声明场景 scene = new THREE.Scene(); //将相机装加载到场景 scene.add(camera); //生成渲染器的对象 renderer = new THREE.CanvasRenderer(); //设置渲染器的大小 renderer.setSize( window.innerWidth, window.innerHeight ); //追加元素 document.body.appendChild(renderer.domElement); //调用自定义的生成粒子的方法 makeParticles(); //添加鼠标移动监听 document.addEventListener('mousemove',onMouseMove,false); //设置间隔调用update函数,间隔次数为每秒30次 setInterval(update,1000/30); }
相机初始化说明:
实例中使用的是透视投影. var camera = new THREE.PerspectiveCamera( fov , aspect , near , far );
透视投影中,会把称为视体积领域中的物体作成投影图。 视体积是通过以下4个参数来指定。
视野角:fov
纵横比:aspect
相机离视体积最近的距离:near
相机离视体积最远的距离:far
设置相机的位置:
相机的位置坐标和视野的中心坐标,按照
//设置相机的位置坐标 camera.position.x = 100; camera.position.y = 20; camera.position.z = 50;
方式进行设置。 和该方式一样,下面这样的方法也可以
camera.position.set(100,20,50);
此外还可以设置相机的上方向,视野中心等,
设置相机的上方向为正方向:
camera.up.x = 0; camera.up.y = 0; camera.up.z = 1;
设置相机的视野中心
利用[lookAt]方法来设置相机的视野中心。 「lookAt()」的参数是一个属性包含中心坐标「x」「y」「z」的对象。
「lookAt()」方法不仅是用来设置视点的中心坐标、 在此之前设置的相机属性要发生实际作用,也需要调用 [lookAt] 方法。
其他投影方式
在 Three.js 中、有各种各样的类,用来来实现透视投影、正投影或者复合投影(透视投影和正投影)这样的相机。
var camera = THREE.OrthographicCamera = function ( left, right, top, bottom, near, far ) //正投影 var camera = THREE.CombinedCamera = function ( width, height, fov, near, far, orthonear, orthofar ) //複合投影
渲染器
创建CanvasRenderer对象.这是一个普通的2D画布对象,实例中我们添加到body标签中. 否则我们就不会看到它。我们想让它充满整个浏览器窗口,所以我们设置其大小为window.innerwidth和window.innerheight。
鼠标监听
使用自定义函数makeParticles()创建粒子,并为其添加mousemove侦听器来跟踪鼠标的位置,最后我们建立一个间隔调用update函数一秒30次。
update函数中的定义如下:
function update() { updateParticles(); renderer.render( scene, camera ); }
产生粒子的函数
//定义粒子生成的方法 function makeParticles(){ var particle,material; //粒子从Z轴产生区间在-1000到1000 for(var zpos=-1000;zpos<1000;zpos+=20){ //we make a particle material and pass through the colour and custom particle render function we defined. material = new THREE.ParticleCanvasMaterial( { color: 0xffffff, program: particleRender } ); //生成粒子 particle = new THREE.Particle(material); //随即产生x轴,y轴,区间值为-500-500 particle.position.x = Math.random()*1000-500; particle.position.y = Math.random()*1000-500; //设置z轴 particle.position.z = zpos; //scale it up a bit particle.scale.x = particle.scale.y = 10; //将产生的粒子添加到场景,否则我们将不会看到它 scene.add(particle); //将粒子位置的值保存到数组 particles.push(particle); } }
math . random()返回一个浮点数在0和1之间,我们乘以1000,给了我们一个0到1000之间的数字。然后我们减去500,这给了我们一个号码在-500和500之间.我们也可以这样定义一个生成范围区间内随机值的函数
function randomRange(min, max) { return Math.random()*(max-min) + min; }
绘制粒子的函数
//定义粒子绘制函数 function particleRender( context ) { //获取canvas上下文的引用 context.beginPath(); // and we just have to draw our shape at 0,0 - in this // case an arc from 0 to 2Pi radians or 360º - a full circle! context.arc( 0, 0, 1, 0, Math.PI * 2, true ); //设置原型填充 context.fill(); }
定义粒子移动的函数,这里设置成移动速度随着鼠标距离Y轴0点的值越大,粒子移动越快
//移动粒子的函数 function updateParticles(){ //遍历每个粒子 for(var i=0; i<particles.length; i++){ particle = particles[i]; //设置粒子向前移动的速度依赖于鼠标在平面Y轴上的距离 particle.position.z += mouseY * 0.1; //如果粒子Z轴位置到1000,将z轴位置设置到-1000,即移动到原点,这样就会出现无穷尽的星域效果. if(particle.position.z>1000){ particle.position.z-=2000; } } }
鼠标移动时函数监听
//鼠标移动时调用 function onMouseMove(event){ mouseX = event.clientX; mouseY = event.clientY; }
至此,空间粒子简单效果学习完毕.
整合代码如下:
<!DOCTYPE HTML> <html> <head> <meta charset="utf-8"> <title>Three.js实现3D空间粒子效果</title> <style type="text/css"> body{ background-color:#000000; margin:0px; overflow:hidden; } </style> <script src="scripts/three.js"></script> <script> //定义应用所需的组件:相机,场景,渲染器 var camera, scene, renderer; //跟踪鼠标的位置 var mouseX = 0, mouseY = 0; //定义存储粒子的数组 var particles = []; //数据初始化 function init(){ //相机参数: //四个参数值分别代表:视野角:fov 纵横比:aspect 相机离视体最近的距离:near 相机离视体最远的距离:far camera = new THREE.PerspectiveCamera(80, window.innerWidth / window.innerHeight, 1, 4000 ); //设置相机位置,默认位置为:0,0,0. camera.position.z = 1000; //声明场景 scene = new THREE.Scene(); //将相机装加载到场景 scene.add(camera); //生成渲染器的对象 renderer = new THREE.CanvasRenderer(); //设置渲染器的大小 renderer.setSize( window.innerWidth, window.innerHeight ); //追加元素 document.body.appendChild(renderer.domElement); //调用自定义的生成粒子的方法 makeParticles(); //添加鼠标移动监听 document.addEventListener('mousemove',onMouseMove,false); //设置间隔调用update函数,间隔次数为每秒30次 setInterval(update,1000/30); } function update() { //调用移动粒子的函数 updateParticles(); //重新渲染 renderer.render( scene, camera ); } //定义粒子生成的方法 function makeParticles(){ var particle,material; //粒子从Z轴产生区间在-1000到1000 for(var zpos=-1000;zpos<1000;zpos+=20){ //we make a particle material and pass through the colour and custom particle render function we defined. material = new THREE.ParticleCanvasMaterial( { color: 0xffffff, program: particleRender } ); //生成粒子 particle = new THREE.Particle(material); //随即产生x轴,y轴,区间值为-500-500 particle.position.x = Math.random()*1000-500; //math . random()返回一个浮点数在0和1之间 particle.position.y = Math.random()*1000-500; //设置z轴 particle.position.z = zpos; //scale it up a bit particle.scale.x = particle.scale.y = 10; //将产生的粒子添加到场景 scene.add(particle); //将粒子位置的值保存到数组 particles.push(particle); } } //定义粒子渲染器 function particleRender( context ) { //获取canvas上下文的引用 context.beginPath(); // and we just have to draw our shape at 0,0 - in this // case an arc from 0 to 2Pi radians or 360º - a full circle! context.arc( 0, 0, 1, 0, Math.PI * 2, true ); //设置原型填充 context.fill(); } //移动粒子的函数 function updateParticles(){ //遍历每个粒子 for(var i=0; i<particles.length; i++){ particle = particles[i]; //设置粒子向前移动的速度依赖于鼠标在平面Y轴上的距离 particle.position.z += mouseY * 0.1; //如果粒子Z轴位置到1000,将z轴位置设置到-1000 if(particle.position.z>1000){ particle.position.z-=2000; } } } //鼠标移动时调用 function onMouseMove(event){ mouseX = event.clientX; mouseY = event.clientY; } </script> </head> <body onload="init()"> </body> </html>
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍WPF实现3D粒子波浪效果,包括了WPF实现3D粒子波浪效果的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了WPF实现3D粒子波浪效果的具体代码,供大家参考,具体内容如下 实现效果如下: 步骤: 1、3D粒子类Particle.cs 2、粒子系统ParticleSystem类 3、Viewport布局 4、交互逻辑 以上就是本文的全部内容,希望对大家的学习有所帮助,也希
本文向大家介绍JavaScript实现鼠标移动粒子跟随效果,包括了JavaScript实现鼠标移动粒子跟随效果的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了JavaScript实现鼠标移动粒子跟随效果的具体代码,供大家参考,具体内容如下 ※ 如上图是最终显示效果,跟随鼠标的移动,生成的粒子跟随。 需要用到的js库:Underscore。Underscore是一个JavaScript
本文向大家介绍jQuery实现炫丽的3d旋转星空效果,包括了jQuery实现炫丽的3d旋转星空效果的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了jQuery实现炫丽的3d旋转星空效果。分享给大家供大家参考,具体如下: 该特效也是在Jquery插件库中找到的,感觉效果不错,说不定以后项目中要有绚丽的星空背景,拿来即用,收藏了下。 下载解压后的目录结构 index.html页面代码: 运行的
Cocos Creator 在 v2.3 中新增了对 3D 粒子的支持,包括了 3D 粒子基础功能。功能基本与 Creator 3D 一致,目前提供了包括 Shape、Color、Velocity、Size、序列帧、拖尾等数十个模块选择,可以组合出各类粒子效果。但目前存在版本功能上的差异,未来将会继续完善同步,逐步与 Creator 3D 保持一致。差异部分如下: 目前暂未提供编辑器中粒子控制
本文向大家介绍canvas实现粒子时钟效果,包括了canvas实现粒子时钟效果的使用技巧和注意事项,需要的朋友参考一下 前面的话 本文将使用canvas实现粒子时钟效果 效果展示 点阵数字 digit.js是一个三维数组,包含的是0到9以及冒号(digit[10])的二维点阵。每个数字的点阵表示是7*10大小的二维数组 通过遍历数字点阵的二维数组,当该位置的值为1时,则绘制一个粒子,否则不绘制 将
这个引擎支持一系列3D渲染,材质制作,多玩家在线,跨平台和可被多编译器编译。但它采用了双协议,商业版是闭源的,源代码在GPLv3许可证下发布。