1、求解质数
1.1说明
首先,我们来了解这样一个概念,那就是什么叫做质数?质数:一个数如果只能被1和它自己整除,这样的数被称为质数,与之对应的,称为和数。基于这样的一个概念,我们可以很快想到一个方法,就是从1开始,不断试探,看从1到它自己,是否有数字能够被他整除。
这样看来,其实求质数很简单,我们有没有更加便捷的方式呢?在这里介绍一个著名的Eratosthenes求质数方法。
1.2解法
首先知道这个问题可以使用回圈来求解,将一个指定的数除以所有小于它的数,若可以整除就不是质数,然而如何减少回圈的检查次数?如何求出小于N的所有质数?
假设要检查的数是N好了,则事实上只要检查至N的开根号就可以了,道理很简单,假设A*B=N,如果A大于N的开根号,则事实上在小于A之前的检查就可以先检查到B这个数可以整除N。不过在程式中使用开根号会精确度的问题,所以可以使用i*i<=N进行检查,且执行更快。
再来假设有一个筛子存放1~N,例如:
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ........ N
先将2的倍数筛去:
2 3 5 7 9 11 13 15 17 19 21 ........ N
再将3的倍数筛去:
2 3 5 7 11 13 17 19 ........ N
再来将5的倍数筛去,再来将7的质数筛去,再来将11的倍数筛去........,如此进行到最后留下的数就都是质数,这就是Eratosthenes筛选方法(EratosthenesSieveMethod)。
检查的次数还可以再减少,事实上,只要检查6n+1与6n+5就可以了,也就是直接跳过2与3的倍数,使得程式中的if的检查动作可以减少。
1.3代码
import java.util.*; public class Prime { public static int[] findPrimes(final int max) { int[] prime = new int[max+1]; ArrayList list = new ArrayList(); for(int i = 2; i <= max; i++) prime[i] = 1; for(int i = 2; i*i <= max; i++) { // 这边可以改进 if(prime[i] == 1) { for(int j = 2*i; j <= max; j++) { if(j % i == 0) prime[j] = 0; } } } for(int i = 2; i < max; i++) { if(prime[i] == 1) { list.add(new Integer(i)); } } int[] p = new int[list.size()]; Object[] objs = list.toArray(); for(int i = 0; i < p.length; i++) { p[i] = ((Integer) objs[i]).intValue(); } return p; } public static void main(String[] args) { int[] prime = Prime.findPrimes(1000); for(int i = 0; i < prime.length; i++) { System.out.print(prime[i] + " "); } System.out.println(); } }
2、因式分解
2.1说明
如上所示,我们先来了解一下,什么叫做因式分解?将一个数,转换成另外几个数字的乘积,就被称为因式分解。当了解到这样一个概念之后,我们对比上面的求解质数,应该能够明白,其实这里我们是在求解一个和数的因子。
因式分解基本上就是使用小于输入数的数值当作除数,去除以输入数值,如果可以整除就视为因数,要比较快的解法就是求出小于该数的所有质数,并试试看是不是可以整除。
2.2代码
import java.util.ArrayList; public class Factor { public static int[] factor(int num) { int[] pNum = Prime.findPrimes(num); ArrayList list = new ArrayList(); for(int i = 0; pNum[i] * pNum[i] <= num;) { if(num % pNum[i] == 0) { list.add(new Integer(pNum[i])); num /= pNum[i]; } else i++; } list.add(new Integer(num)); int[] f = new int[list.size()]; Object[] objs = list.toArray(); for(int i = 0; i < f.length; i++) { f[i] = ((Integer) objs[i]).intValue(); } return f; } public static void main(String[] args) { int[] f = Factor.factor(100); for(int i = 0; i < f.length; i++) { System.out.print(f[i] + " "); } System.out.println(); } }
3、总结
求解质数与因式分解,是学习程序与算法的基本功,应该熟练掌握,这里的代码只有少量的注释,可能对于初学者来说,略感吃力,但是这是进入程序算法殿堂的第一步。大家可以将这段代码拷贝到自己的机器上,逐步填上注释,让自己对程序流程更加清晰。
以上就是本文关于Java编程实现求质数与因式分解代码分享的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出!
本文向大家介绍java编程实现求解八枚银币代码分享,包括了java编程实现求解八枚银币代码分享的使用技巧和注意事项,需要的朋友参考一下 1、引言 笔者在大学的算法竞赛中,遇到过这样的一个题目,现在拿出来与大家分享一下:现在有现有八枚银币abcdefgh,已知其中一枚是假币,其重量不同于真币,但不知是较轻或较重,如何使用天平以最少的比较次数,决定出哪枚是假币,并得知假币比真币较轻或较重。 2、分析
本文向大家介绍Java编程redisson实现分布式锁代码示例,包括了Java编程redisson实现分布式锁代码示例的使用技巧和注意事项,需要的朋友参考一下 最近由于工作很忙,很长时间没有更新博客了,今天为大家带来一篇有关Redisson实现分布式锁的文章,好了,不多说了,直接进入主题。 1. 可重入锁(Reentrant Lock) Redisson的分布式可重入锁RLock Java对象实现
本文向大家介绍Java编程实现月食简单代码分享,包括了Java编程实现月食简单代码分享的使用技巧和注意事项,需要的朋友参考一下 用java的框架和面板的知识做的一个展示月食过程的小程序。这里的想法就是先把背景设置成黑色,然后画一个黄色的圆作为月亮,接着画一个黑色的圆,将它的y坐标与月亮相同,让这个x不断的自增,(这个x代表的是fillArc()里面的那个其实位置坐标)然后很关键的两个方法是slee
本文向大家介绍Java实现的质因数分解操作示例【基于递归算法】,包括了Java实现的质因数分解操作示例【基于递归算法】的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Java实现的质因数分解操作。分享给大家供大家参考,具体如下: 这里演示java通过递归实现质因数分解,代码如下: 运行结果: PS:这里提供一款功能相似的在线工具供大家参考:在线分解质因数计算器工具 http://tools
我写了一个程序,将数字分解为它的质因数,然后将它们存储在一个向量中,最后询问是否通过将它们相乘来验证结果。 它的工作方式是这样的:要求一个数字(代码中的),然后将其除以2及以上。 如果它找到一个模(当mod时)为零的数字(代码中的 ),则将该除数存储到一个向量中,并将其除以 ,然后将其存储到 中,然后将除数重置为1(而 循环中的最后一条语句将其递增为2)。如果没有找到这样的数字, 将增加,直到它大
本文向大家介绍Java语言求解完美数代码分析,包括了Java语言求解完美数代码分析的使用技巧和注意事项,需要的朋友参考一下 1、概念 首先我们理解一下,什么叫做完美数? 问题描述:若一个自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身,这种数叫做完全数。简称“完数” 例如, 6=1+2+3 28=1+2+4+7+14 496=1+2+4+8+16+31+62+124+2