k-近邻算法概述:
所谓k-近邻算法KNN就是K-Nearest neighbors Algorithms的简称,它采用测量不同特征值之间的距离方法进行分类
用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。
k-近邻算法分析
优点:精度高、对异常值不敏感、无数据输入假定。
缺点:计算复杂度高、空间复杂度高。
适用数据范围:数值型和标称型
k-近邻算法工作原理:
它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的的分类,作为新数据的分类。
k-近邻算法实现过程:
对未知类别属性的数据集中的每个点依次执行以下操作:
(1)计算已知类别数据集中的点与当前点之间的距离;
(2)按照距离递增次序排序;
(3)选取与当前点距离最小的k个点;
(4)确定前k个点所在类别的出现频率;
(5)返回前k个点出现频率最高的类别作为当前点的预测分类。
k-近邻算法python代码实现:
编辑kNN.py文件代码如下:
编辑完成后保存,linux下确保当前路径为存储kNN.py文件的位置,进入python开发环境开始测试:
上图给出了点[0,0]、[1,0.9]的测试输出分类结果分别为B、A。至此,我们已经构造完成了一个分类器,使用这个分类器可以完成很多分类任务。从这个实例出发,构造使用分类算法将会更加容易。
分类器测试评估:
为了测试分类器的效果,需要对分类器做出评估,我们可以通过大量的测试数据得到分类器的错误率——分类器给出错误结果的次数除以测试执行的总数。错误率是常用的评估方法,主要用于评估分类器在某个数据集上的执行效果。完美分类器的错误率为0,最差分类器的错误率是1.0,在这种情况下,分类器根本就无法找到一个正确答案。
结束语:
本文首先对kNN做了简单介绍,通过了解其工作原理和实现流程,并使用k-近邻算法构造了分类器。我们也可以检验分类器给出的答案是否符合我们的预期。此外,还可以对分类器做大量的测试,并以错误率来评估该分类器的分类效果。
以上就是本文关于K-近邻算法的python实现代码分享的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题。如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
本文向大家介绍Python实现KNN(K-近邻)算法的示例代码,包括了Python实现KNN(K-近邻)算法的示例代码的使用技巧和注意事项,需要的朋友参考一下 一、概述 KNN(K-最近邻)算法是相对比较简单的机器学习算法之一,它主要用于对事物进行分类。用比较官方的话来说就是:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例, 这K个实例的多数属于某个类,就把该输入实
本文向大家介绍python K近邻算法的kd树实现,包括了python K近邻算法的kd树实现的使用技巧和注意事项,需要的朋友参考一下 k近邻算法的介绍 k近邻算法是一种基本的分类和回归方法,这里只实现分类的k近邻算法。 k近邻算法的输入为实例的特征向量,对应特征空间的点;输出为实例的类别,可以取多类。 k近邻算法不具有显式的学习过程,实际上k近邻算法是利用训练数据集对特征向量空间进行划分。将划分
KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法。 一句话总结:近朱者赤近墨者黑! k 近邻算法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k 近邻算法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其 k 个最近邻的训练实例的类别,通过多数表决等方式进行预
本文向大家介绍K最近邻算法(KNN)---sklearn+python实现方式,包括了K最近邻算法(KNN)---sklearn+python实现方式的使用技巧和注意事项,需要的朋友参考一下 k-近邻算法概述 简单地说,k近邻算法采用测量不同特征值之间的距离方法进行分类。 k-近邻算法 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型
综述 所谓:“近朱者赤,近墨者黑” 本文采用编译器:jupyter k近邻(简称kNN)算法是一种常用的监督学习算法, 其工作机制非常简单 : 给定测试样本,基于某种距离度量找出训练集中与其最靠近的 k个训练样本,然后基于这 k个"邻居"的信息来进行预测。 通常, 在分类任务中可使用"投票法" 即选择这 k个样本中出现最多的类别标记作为预测结果;还可基于距离远近进行加权平均或加权投票,距离越近的样
介绍 KNN算法全名为k-Nearest Neighbor,就是K最近邻的意思。KNN 也是一种分类算法。但是与之前说的决策树分类算法相比,这个算法算是最简单的一个了。算法的主要过程为: 1、给定一个训练集数据,每个训练集数据都是已经分好类的。 2、设定一个初始的测试数据a,计算a到训练集所有数据的欧几里得距离,并排序。 3、选出训练集中离a距离最近的