当前位置: 首页 > 编程笔记 >

Python实现KNN(K-近邻)算法的示例代码

蔡弘扬
2023-03-14
本文向大家介绍Python实现KNN(K-近邻)算法的示例代码,包括了Python实现KNN(K-近邻)算法的示例代码的使用技巧和注意事项,需要的朋友参考一下

一、概述

KNN(K-最近邻)算法是相对比较简单的机器学习算法之一,它主要用于对事物进行分类。用比较官方的话来说就是:给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例, 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。为了更好地理解,通过一个简单的例子说明。

我们有一组自拟的关于电影中镜头的数据:

那么问题来了,如果有一部电影 X,它的打戏为 3,吻戏为 2。那么这部电影应该属于哪一类?

我们把所有数据通过图表显示出来(圆点代表的是自拟的数据,也称训练集;三角形代表的是 X 电影的数据,称为测试数据):

计算测试数据到训练数据之间的距离,假设 k 为 3,那么我们就找到距离中最小的三个点,假如 3 个点中有 2 个属于动作片,1 个属于爱情片,那么把该电影 X 分类为动作片。这种通过计算距离总结 k 个最邻近的类,按照”少数服从多数“原则分类的算法就为 KNN(K-近邻)算法。

二、算法介绍

还是以上面的数据为例,打戏数为 x,吻戏数为 y,通过欧式距离公式计算测试数据到训练数据的距离,我上中学那会儿不知道这个叫做欧式距离公式,一直用”两点间的距离公式“来称呼这个公式: 。但是现实中的很多数据都是多维的,即使如此,也还是按照这个思路进行计算,比如如果是三维的话,就在根号里面再加上 z 轴差的平方,即  ,以此类推。

知道了这个计算公式,就可以计算各个距离了。我们以到最上面的点的距离为例: ,那么从上到下的距离分别是: 。现在我们把 k 定为 3,那么距离最近的就是后面三个数了,在这三个数中,有两个属于动作片,因此,电影 X 就分类为动作片。

三、算法实现

知道了原理,那就可以用代码实现了,这里就不再赘述了,直接上带注释的 Python 代码:

'''
  trainData - 训练集
  testData - 测试集
  labels - 分类
'''
def knn(trainData, testData, labels, k):
  # 计算训练样本的行数
  rowSize = trainData.shape[0]
  # 计算训练样本和测试样本的差值
  diff = np.tile(testData, (rowSize, 1)) - trainData
  # 计算差值的平方和
  sqrDiff = diff ** 2
  sqrDiffSum = sqrDiff.sum(axis=1)
  # 计算距离
  distances = sqrDiffSum ** 0.5
  # 对所得的距离从低到高进行排序
  sortDistance = distances.argsort()
  
  count = {}
  
  for i in range(k):
    vote = labels[sortDistance[i]]
    count[vote] = count.get(vote, 0) + 1
  # 对类别出现的频数从高到低进行排序
  sortCount = sorted(count.items(), key=operator.itemgetter(1), reverse=True)
  
  # 返回出现频数最高的类别
  return sortCount[0][0]

ps:np.tile(testData, (rowSize, 1)) 是将 testData 这个数据扩展为 rowSize 列,这样能避免运算错误;

sorted(count.items(), key=operator.itemgetter(1), reverse=True) 排序函数,里面的参数 key=operator.itemgetter(1), reverse=True 表示按照 count 这个字典的值(value)从高到低排序,如果把 1 换成 0,则是按字典的键(key)从高到低排序。把 True 换成 False 则是从低到高排序。

四、测试与总结

用 Python 实现了算法之后,我们用上面的数据进行测试,看一下结果是否和我们预测的一样为动作片:

trainData = np.array([[5, 1], [4, 0], [1, 3], [0, 4]])
labels = ['动作片', '动作片', '爱情片', '爱情片']
testData = [3, 2]
X = knn(trainData, testData, labels, 3)
print(X)

执行这段代码后输出的结果为:动作片 。和预测的一样。当然通过这个算法分类的正确率不可能为 100%,可以通过增加修改数据测试,如果有大量多维的数据就更好了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 综述 所谓:“近朱者赤,近墨者黑” 本文采用编译器:jupyter k近邻(简称kNN)算法是一种常用的监督学习算法, 其工作机制非常简单 : 给定测试样本,基于某种距离度量找出训练集中与其最靠近的 k个训练样本,然后基于这 k个"邻居"的信息来进行预测。 通常, 在分类任务中可使用"投票法" 即选择这 k个样本中出现最多的类别标记作为预测结果;还可基于距离远近进行加权平均或加权投票,距离越近的样

  • 本文向大家介绍K最近邻算法(KNN)---sklearn+python实现方式,包括了K最近邻算法(KNN)---sklearn+python实现方式的使用技巧和注意事项,需要的朋友参考一下 k-近邻算法概述 简单地说,k近邻算法采用测量不同特征值之间的距离方法进行分类。 k-近邻算法 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型

  • 本文向大家介绍K-近邻算法的python实现代码分享,包括了K-近邻算法的python实现代码分享的使用技巧和注意事项,需要的朋友参考一下 k-近邻算法概述: 所谓k-近邻算法KNN就是K-Nearest neighbors Algorithms的简称,它采用测量不同特征值之间的距离方法进行分类 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻

  • 本文向大家介绍python K近邻算法的kd树实现,包括了python K近邻算法的kd树实现的使用技巧和注意事项,需要的朋友参考一下 k近邻算法的介绍 k近邻算法是一种基本的分类和回归方法,这里只实现分类的k近邻算法。 k近邻算法的输入为实例的特征向量,对应特征空间的点;输出为实例的类别,可以取多类。 k近邻算法不具有显式的学习过程,实际上k近邻算法是利用训练数据集对特征向量空间进行划分。将划分

  • KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法。 一句话总结:近朱者赤近墨者黑! k 近邻算法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类。k 近邻算法假设给定一个训练数据集,其中的实例类别已定。分类时,对新的实例,根据其 k 个最近邻的训练实例的类别,通过多数表决等方式进行预

  • 介绍 KNN算法全名为k-Nearest Neighbor,就是K最近邻的意思。KNN 也是一种分类算法。但是与之前说的决策树分类算法相比,这个算法算是最简单的一个了。算法的主要过程为: 1、给定一个训练集数据,每个训练集数据都是已经分好类的。 2、设定一个初始的测试数据a,计算a到训练集所有数据的欧几里得距离,并排序。                        3、选出训练集中离a距离最近的