简介
这里通过python的绘图工具Matplotlib包可视化实现机器学习中的KNN算法。
需要提前安装python的Numpy和Matplotlib包。
KNN–最近邻分类算法,算法逻辑比较简单,思路如下:
1.设一待分类数据iData,先计算其到已标记数据集中每个数据的距离,例如欧拉距离sqrt((x1-x2)^2+(y1-y2)^2);
2.然后根据离iData最近的k个数据的分类,出现次数最多的类别定为iData的分类。
KNN——最近邻算法python代码
代码实现:
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt def KNNClassify(labelData,predData,k): #数据集包含分类属性 #labelData 是已经标记分类的数据集 #predData 未分类的待预测数据集 labShape = labelData.shape for i in range(predData.shape[0]): #以predData的每行数据进行遍历 iData = predData[i] iDset = np.tile(iData,(labShape[0],1)) #将iData重复,扩展成与labelData同形的矩阵 #这里用欧拉距离sqrt((x1-x2)^2+(y1-y2)^2) diff = iDset[...,:-1] - labelData[...,:-1] diff = diff**2 distance = np.sum(diff,axis=1) distance = distance ** 0.5 #开根号 sortedIND = np.argsort(distance) #排序,以序号返回。 classCount = { } for j in range(k): #计算距离最近的前k个标记数据的类别 voteLabel = labelData[sortedIND[j],-1] classCount[voteLabel] = classCount.get(voteLabel,0)+1 maxcls = max(classCount,key=classCount.get) #类别最多的,返回键名(类别名) predData[i][...,-1] = maxcls return predData
为了测试这个算法,需要现成的已分类数据集,由于手动输入很有限,数据量少,耗时。作为学习我们这里用代码模拟生成数据来进行测试。下面是生成已分类数据集的代码:
生成模拟数据的函数
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt #模拟生成分类数据 #目标是产生二维坐标中的几堆数据集,每堆为一个类 #函数逻辑: #将x轴分段,每个段设一个中心的,所有的中心点用cores存储。 #设置每个数据中心点core的类别,由中心点在一定范围内随机产生数据,并将这些数据设为和core一样的类别 #所以每类的数据会简单的被X轴的每段大致分开 def makeKNNData(colnum,clsnum,nums,cores = []): #colnum单个数据拥有特征数量(包括数据的分类); # clsnum表示共有多少种分类; # nums是一个元组,表示每个类别希望产生多少数据样本,如colnum为5,nums为[56, 69, 60, 92, 95]; #cores非必要参数,手动给出只是用于测试,cores提供每类的中心点,以中心点为依据产生该类数据。 dataSet = np.zeros((sum(nums),colnum)) #初始化数据集,用于存放随后生成的所有数据 n=0 #记录生成数据的下标 step = 20/clsnum #假定X坐标轴只显示0~20的范围,step为X轴分段后的段长 for j in range(clsnum): #循环生成各个类数据 try: core = cores[j] #如果cores没有给出则,则出错,跳至except执行 except IndexError : core = np.random.rand(1,3) #中心点为array([[x1,x2,c]]),c用于表示类别,这里产生的是1*3的二维数组 core[0][0] =j*step + core[0][0]*step #将x1限制在各段中 core[0][1] *=15 #将x2即y轴限制在0~15范围内 core[0][2] = j #设置类别 cores.append(core) for i in range(nums[j]): #按nums中指定了每类数据的数量,用循环生成。 point= core[0][:2] + np.random.rand(1,2)*step -step/2 #产生点point(x,y),x以中心点在(core_x - step/2, core_x + step/2)范围随机波动,y同理。 row = np.column_stack((point,core[0][2])) #加上类别成为一个数据 dataSet[n] = row n +=1 i +=1 j +=1 #print("print cores:",cores) return dataSet
有了数据集之后,我们可以用Matplotlib将数据可视化,以直观显示出来
数据可视化函数
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt #绘图展示数据,每类数据点以不同的颜色显示 def showFigure(dataSet,clsnum): fig = plt.figure() ax = fig.add_subplot(1,1,1) #界面只需显示一个视图 ax.set_title('KNN separable data set') #视图名称,这里简单统一定这个名称吧 plt.xlabel('X') #坐标轴名称 plt.ylabel('Y') colors = ['r','g','b','y','k'] #定义显示的颜色b为blue,k为black for i in range(clsnum): idx = np.where(dataSet[:,2] == i) #查询每类的索引号 ax.scatter(dataSet[idx,0], dataSet[idx,1], marker='o', color=colors[i%5], label=1, s=10) #在视图中的显示方式 plt.legend(loc = 'upper right') #图例显示位置 plt.show() #测试一下 #需要结合模拟生成数据的函数 classnum = 5 nums = np.random.randint(50,100,classnum) #示例 array([56, 69, 60, 92, 95]),每个数字在50~100范围内 dataSet = makeKNNData(3,classnum,nums) showFigure(dataSet,classnum)
生成的模拟数据展示结果如下:
完整代码
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt #模拟生成分类数据 #目标是产生二维坐标中的几堆数据集,每堆为一个类 #函数逻辑: #将x轴分段,每个段设一个中心的,所有的中心点用cores存储。 #设置每个数据中心点core的类别,由中心点在一定范围内随机产生数据,并将这些数据设为和core一样的类别 #所以每类的数据会简单的被X轴的每段大致分开 def makeKNNData(colnum,clsnum,nums,cores = []): #colnum单个数据拥有特征数量(包括数据的分类); # clsnum表示共有多少种分类; # nums是一个元组,表示每个类别希望产生多少数据样本; #cores非必要参数,手动给出只是用于测试,cores提供每类的中心点,以中心点为依据产生该类数据。 dataSet = np.zeros((sum(nums),colnum)) #初始化数据集,用于存放随后生成的所有数据 n=0 #记录生成数据的下标 step = 20/clsnum #假定X坐标轴只显示0~20的范围,step为X轴分段后的段长 for j in range(clsnum): #循环生成各个类数据 try: core = cores[j] #如果cores没有给出则,则出错,跳至except执行 except IndexError : core = np.random.rand(1,3) #中心点为array([[x1,x2,c]]),c用于表示类别,这里产生的是1*3的二维数组 core[0][0] =j*step + core[0][0]*step #将x1限制在各段中 core[0][1] *=15 #将x2即y轴限制在0~15范围内 core[0][2] = j #设置类别 cores.append(core) for i in range(nums[j]): #按nums中指定了每类数据的数量,用循环生成。 point= core[0][:2] + np.random.rand(1,2)*step -step/2 #产生点point(x,y),x以中心点在(core_x - step/2, core_x + step/2)范围随机波动,y同理。 row = np.column_stack((point,core[0][2])) #加上类别成为一个数据 dataSet[n] = row n +=1 i +=1 j +=1 #print("print cores:",cores) return dataSet #绘图展示数据,每类数据点以不同的颜色显示 def showFigure(dataSet,clsnum): fig = plt.figure() ax = fig.add_subplot(1,1,1) #界面只需显示一个视图 ax.set_title('KNN separable data set') #视图名称,这里简单统一定这个名称吧 plt.xlabel('X') #坐标轴名称 plt.ylabel('Y') colors = ['r','g','b','y','k'] #定义显示的颜色b为blue,k为black for i in range(clsnum): idx = np.where(dataSet[:,2] == i) #查询每类的索引号 ax.scatter(dataSet[idx,0], dataSet[idx,1], marker='o', color=colors[i%5], label=1, s=10) #在视图中的显示方式 plt.legend(loc = 'upper right') #图例显示位置 plt.show() #分类算法: #待分类数据iData,先计算其到已标记数据集中每个数据的距离 #然后根据离iData最近的k个数据的分类,出现次数最多的类别定为iData的分类。 def KNNClassify(labelData,predData,k): #数据集包含分类属性 #labelData 是已经标记分类的数据集 #predData 待预测数据集 labShape = labelData.shape for i in range(predData.shape[0]): #以predData的每行数据进行遍历 iData = predData[i] iDset = np.tile(iData,(labShape[0],1)) #将iData重复,扩展成与labelData同形的矩阵 #这里用欧拉距离sqrt((x1-x2)^2+(y1-y2)^2) diff = iDset[...,:-1] - labelData[...,:-1] diff = diff**2 distance = np.sum(diff,axis=1) distance = distance ** 0.5 #开根号 sortedIND = np.argsort(distance) #排序,以序号返回。 classCount = { } for j in range(k): #计算距离最近的前k个标记数据的类别 voteLabel = labelData[sortedIND[j],-1] classCount[voteLabel] = classCount.get(voteLabel,0)+1 maxcls = max(classCount,key=classCount.get) #类别最多的,返回键名(类别名) predData[i][...,-1] = maxcls return predData #测试 labNums = np.random.randint(50,200,classnum) predNums = np.random.randint(10,80,classnum) #cores = [np.array([[ 0.08321641, 12.22596938, 0. ]]), np.array([[9.99891798, 4.24009775, 1. ]]), np.array([[14.98097374, 9.80120399, 2. ]])] labelData = makeKNNData(3,classnum,labNums) showFigure(labelData,classnum) predData = makeKNNData(3,classnum,predNums) #这里为了方便,不在写产生待分类数据的代码,只需用之前的函数并忽略其类别就好。 predData[...,-1]=0 showFigure(predData,classnum) k = 10 KNNData = KNNClassify(labelData,predData,k) showFigure(KNNData,classnum)
运行程序,结果如下:
1.labelData的数据(已知分类的数据)
2.predData的数据(未标记的数据)
3KNNData的数据(用KNN算法进行分类后的数据)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍python实现KNN分类算法,包括了python实现KNN分类算法的使用技巧和注意事项,需要的朋友参考一下 一、KNN算法简介 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。 kNN算法的核心思想是如果一个样本在特征空间中的k
本文向大家介绍用Python实现KNN分类算法,包括了用Python实现KNN分类算法的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了Python KNN分类算法的具体代码,供大家参考,具体内容如下 KNN分类算法应该算得上是机器学习中最简单的分类算法了,所谓KNN即为K-NearestNeighbor(K个最邻近样本节点)。在进行分类之前KNN分类器会读取较多数量带有分类标签的样本
本文向大家介绍基于python实现KNN分类算法,包括了基于python实现KNN分类算法的使用技巧和注意事项,需要的朋友参考一下 kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻
本文向大家介绍使用python实现kNN分类算法,包括了使用python实现kNN分类算法的使用技巧和注意事项,需要的朋友参考一下 k-近邻算法是基本的机器学习算法,算法的原理非常简单: 输入样本数据后,计算输入样本和参考样本之间的距离,找出离输入样本距离最近的k个样本,找出这k个样本中出现频率最高的类标签作为输入样本的类标签,很直观也很简单,就是和参考样本集中的样本做对比。下面讲一讲用pytho
本文向大家介绍原生python实现knn分类算法,包括了原生python实现knn分类算法的使用技巧和注意事项,需要的朋友参考一下 一、题目要求 用原生Python实现knn分类算法。 二、题目分析 数据来源:鸢尾花数据集(见附录Iris.txt) 数据集包含150个数据集,分为3类,分别是:Iris Setosa(山鸢尾)、Iris Versicolour(杂色鸢尾)和Iris Virginic
Pyhthon Sklearn 机器学习库提供了 neighbors 模块,该模块下提供了 KNN 算法的常用方法,如下所示: 类方法 说明 KNeighborsClassifier KNN 算法解决分类问题 KNeighborsRegressor KNN 算法解决回归问题 RadiusNeighborsClassifier 基于半径来查找最近邻的分类算法 NearestNeighbors 基于无