当前位置: 首页 > 编程笔记 >

TensorBoard 计算图的可视化实现

朱宜
2023-03-14
本文向大家介绍TensorBoard 计算图的可视化实现,包括了TensorBoard 计算图的可视化实现的使用技巧和注意事项,需要的朋友参考一下

简介

tensorflow 配套的可视化工具, 将你的计算图画出来.

当训练一个巨大的网络的时候, 计算图既复杂又令人困惑. TensorBoard 提供了一系列的组件, 可以看到 learning rate 的变化, 看到 objective function 的变化.

tfboard 读取 tf 运行时你记下的 events files, 来进行可视化. 这些 events files 包含了你记下的 summary data, 它是 protobuffer 格式, 并非文本文件.

推荐使用 Estimator 风格.

类与方法

在 tf.estimator 框架下, 可以直接用 tf.summary.scalar() 这样的方法, 不必显式地创建writer并调用writer.add_summary()

tensorflow.python.summary.writer.writer.FileWriter(SummaryToEventTransformer)

类.

__init__(self, logdir, graph=None,...)

构造函数, Creates a FileWriter and an event file.

tensorflow.python.summary.summary

模块.

scalar(name, tensor, ..) Outputs a Summary protocol buffer containing a single scalar value.

histogram(name, values, collections=None, family=None) Adding a histogram summary makes it possible to visualize your data's distribution in TensorBoard.

image

作图, 对于grap-scale 图来讲, 0表示全黑, 255表示全白.

api, image(name, tensor, max_outputs=3, collections=None, family=None) Outputs a Summary protocol buffer with images. images are built from tensor which must be 4-D with shape [batch_size, height, width, channels] and where channels can be:

1.1-tensor is interpreted as Grayscale.

2.3-tensor is interpreted as RGB.

3.4-tensor is interpreted as RGBA.

tensor为float: 此时, tf会内部作正规化处理, 转换到[0,255](解析 tf_events 即可验证), float通常对应于 softm 之后的概率, 值域为[0,1].

tensor为uint8, 保持不变, tf 不作任何内部转换.

attention 可视化, attention 的权重会作 soft-max 处理, 通常img显示的效果是, 一行看下来有深有浅, 颜色越白weight越大. 但有时后tf内部正规化不符合预期, 出现一行全白的情况, 稳妥起见自己转unit类型.

打开web页面

在命令行中 敲tensorboard --logdir=D:\tf_models\iris, 根据提示打开URL即可.

比如我的为http://yichu-amd:6006/.

效果截图

图3-1 logdir中的文件

图3-2 炫酷的可视化效果

figure 3-3 计算图的可视化

给出一些建议:

网络也是分模块,有结构的, 合理使用 scope 可以让计算图清晰优雅.

有些tensor来自dataset, 有些来自api中op操作的输出, 本身没有明确的名字, 此时用x=tf.identity(x,'name') 给tensor起名字, 便于计算图中定位. 图3-3 中的 memory 就是 encoder 的输出的tensor.

以上这篇TensorBoard 计算图的可视化实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。

 类似资料:
  • TensorFlow 图表计算强大而又复杂,图表可视化在理解和调试时显得非常有帮助。 下面是一个运作时的可式化例子。 "一个TensorFlow图表的可视化") 一个TensorFlow图表的可视化。 为了显示自己的图表,需将 TensorBoard 指向此工作的日志目录并运行,点击图表顶部窗格的标签页,然后在左上角的菜单中选择合适的运行。想要深入学习关于如何运行 TensorBoard 以及如何

  • TensorFlow 图表计算强大而又复杂,图表可视化在理解和调试时显得非常有帮助。 下面是一个运作时的可式化例子。 "一个TensorFlow图表的可视化") 一个TensorFlow图表的可视化。 为了显示自己的图表,需将 TensorBoard 指向此工作的日志目录并运行,点击图表顶部窗格的标签页,然后在左上角的菜单中选择合适的运行。想要深入学习关于如何运行 TensorBoard 以及如何

  • TensorFlow包含一个可视化工具 - TensorBoard。它用于分析数据流图,也用于理解机器学习模型。TensorBoard的重要功能包括有关垂直对齐中任何图形的参数和详细信息的不同类型统计信息的视图。 深度神经网络包括有36,000个节点。TensorBoard有助于在高级块中折叠这些节点并突出显示相同的结构。这允许更好地分析关注计算图的主要部分的图。TensorBoard可视化非常具

  • TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算。 为了更方便 TensorFlow 程序的理解、调试与优化,我们发布了一套叫做 TensorBoard 的可视化工具。你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。 当 TensorBoard 设置完成后,它应该是这样子的: 数据序列

  • TensorBoard 涉及到的运算,通常是在训练庞大的深度神经网络中出现的复杂而又难以理解的运算。 为了更方便 TensorFlow 程序的理解、调试与优化,我们发布了一套叫做 TensorBoard 的可视化工具。你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。 当 TensorBoard 设置完成后,它应该是这样子的: 数据序列

  • 5.1.1 计算可视化 随着计算机硬件和软件技术的发展,计算机图形技术越来越成熟,如今已经在各行各业中得到了广泛应用。有一些应用本身的任务就是绘制图形,例如制作动画片、艺术设计之类; 还有一些应用不以绘图为目的,但会利用图形来辅助完成任务,例如统计应用的目的是计算 各种数值指标,但常用图形来直观地展示统计结果。 可视化(visualization)是指将抽象事物和过程转变成视觉可见的、形象直观的图