广度优先搜索
适用范围: 无权重的图,与深度优先搜索相比,深度优先搜索法占内存少但速度较慢,广度优先搜索算法占内存多但速度较快
复杂度: 时间复杂度为O(V+E),V为顶点数,E为边数
思路
广度优先搜索是以层为顺序,将某一层上的所有节点都搜索到了之后才向下一层搜索;
代码
from collections import deque #解决从你的人际关系网中找到芒果销售商的问题 #使用字典表示映射关系 graph = {} graph["you"] = ["alice", "bob", "claire"] graph["bob"] = ["anuj", "peggy"] graph["alice"] = ["peggy"] graph["claire"] = ["thom", "jonny"] graph["anuj"] = [] graph["peggy"] = [] graph["thom"] = [] graph["jonny"] = [] #判断是否是要查找的目标 def is_target_node(name): return name[-1] == 'm' #实现广度优先搜索算法 def search(name): search_queue = deque() #创建一个队列 search_queue += graph[name] searched = [] #记录用于检查过的人 while search_queue: #只要队列不为空 person = search_queue.popleft() #就取出其中的第一个人 if not person in searched: #这个人没有被检查过 if is_target_node(person): #判断这个人是否是要查找的销售商 print(person + " is target node!") return True else: search_queue += graph[person] #如果这个人不是,就将这个人的朋友压入队列 searched.append(person) #将这个人追加到已检查过的字典中 return False #调用方法 search("you")
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
通过构建图,我们现在可以将注意力转向我们将使用的算法来找到字梯问题的最短解。我们将使用的图算法称为“宽度优先搜索”算法。宽度优先搜索(BFS)是用于搜索图的最简单的算法之一。它也作为几个其他重要的图算法的原型,我们将在以后研究。 给定图 G 和起始顶点 s,广度优先搜索通过探索图中的边以找到 G 中的所有顶点,其中存在从 s 开始的路径。通过广度优先搜索,它找到和 s 相距 k 的所有顶点,然后找
主要内容:深度优先搜索(简称“深搜”或DFS),广度优先搜索,总结前边介绍了有关图的 4 种存储方式,本节介绍如何对存储的图中的顶点进行遍历。常用的遍历方式有两种: 深度优先搜索和 广度优先搜索。 深度优先搜索(简称“深搜”或DFS) 图 1 无向图 深度优先搜索的过程类似于树的先序遍历,首先从例子中体会深度优先搜索。例如图 1 是一个无向图,采用深度优先算法遍历这个图的过程为: 首先任意找一个未被遍历过的顶点,例如从 V1 开始,由于 V1 率先访问过了,所以
本文向大家介绍C++实现广度优先搜索实例,包括了C++实现广度优先搜索实例的使用技巧和注意事项,需要的朋友参考一下 本文主要叙述了图的遍历算法中的广度优先搜索(Breadth-First-Search)算法,是非常经典的算法,可供C++程序员参考借鉴之用。具体如下: 首先,图的遍历是指从图中的某一个顶点出发,按照某种搜索方法沿着图中的边对图中的所有顶点访问一次且仅访问一次。注意到树是一种特殊的图,
我正在研究BFS算法,我有一个关于如何将相邻节点插入队列的问题。 例如,假设我们正在处理一个无向图,我们希望执行BFS来输出图的内容,那么我们如何知道在从队列中取出一个初始节点后,相邻节点以什么顺序插入到队列中呢?还有,有没有办法修改邻居节点插入队列的方式? 任何帮助都将不胜感激,谢谢。
在继续使用其他图算法之前,让我们分析广度优先搜索算法的运行时性能。首先要观察的是,对于图中的每个顶点 $$|V|$$ 最多执行一次 while 循环。因为一个顶点必须是白色,才能被检查和添加到队列。这给出了用于 while 循环的 $$O(V)$$。嵌套在 while 内部的 for 循环对于图中的每个边执行最多一次,$$|E|$$。原因是每个顶点最多被出列一次,并且仅当节点 u 出队时,我们才检
本文向大家介绍什么是广度优先搜索?相关面试题,主要包含被问及什么是广度优先搜索?时的应答技巧和注意事项,需要的朋友参考一下 类似树的按层遍历,其过程为:首先访问初始点Vi,并将其标记为已访问过,接着访问Vi的所有未被访问过可到达的邻接点Vi1、Vi2……Vit,并均标记为已访问过,然后再按照Vi1、Vi2……Vit的次序,访问每一个顶点的所有未被访问过的邻接点,并均标记为已访问过,依此类推,直到图