导入相关包
import time import pydash import base64 import requests from lxml import etree from aip import AipFace from pathlib import Path
百度云 人脸检测 申请信息
#唯一必须填的信息就这三行 APP_ID = "xxxxxxxx" API_KEY = "xxxxxxxxxxxxxxxx" SECRET_KEY = "xxxxxxxxxxxxxxxx" # 过滤颜值阈值,存储空间大的请随意 BEAUTY_THRESHOLD = 55 AUTHORIZATION = "oauth c3cef7c66a1843f8b3a9e6a1e3160e20" # 如果权限错误,浏览器中打开知乎,在开发者工具复制一个,无需登录 # 建议最好换一个,因为不知道知乎的反爬虫策略,如果太多人用同一个,可能会影响程序运行
以下皆无需改动
# 每次请求知乎的讨论列表长度,不建议设定太长,注意节操 LIMIT = 5 # 这是话题『美女』的 ID,其是『颜值』(20013528)的父话题 SOURCE = "19552207"
爬虫假装下正常浏览器请求
USER_AGENT = "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/534.55.3 (KHTML, like Gecko) Version/5.1.5 Safari/534.55.3" REFERER = "https://www.zhihu.com/topic/%s/newest" % SOURCE # 某话题下讨论列表请求 url BASE_URL = "https://www.zhihu.com/api/v4/topics/%s/feeds/timeline_activity" # 初始请求 url 附带的请求参数 URL_QUERY = "?include=data%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Danswer%29%5D.target.is_normal%2Ccomment_count%2Cvoteup_count%2Ccontent%2Crelevant_info%2Cexcerpt.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cvoteup_count%2Ccomment_count%2Cvoting%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dtopic_sticky_module%29%5D.target.data%5B%3F%28target.type%3Dpeople%29%5D.target.answer_count%2Carticles_count%2Cgender%2Cfollower_count%2Cis_followed%2Cis_following%2Cbadge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.content%2Crelationship.is_authorized%2Cis_author%2Cvoting%2Cis_thanked%2Cis_nothelp%3Bdata%5B%3F%28target.type%3Danswer%29%5D.target.author.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Darticle%29%5D.target.content%2Cauthor.badge%5B%3F%28type%3Dbest_answerer%29%5D.topics%3Bdata%5B%3F%28target.type%3Dquestion%29%5D.target.comment_count&limit=" + str( LIMIT) HEADERS = { "User-Agent": USER_AGENT, "Referer": REFERER, "authorization": AUTHORIZATION
指定 url,获取对应原始内容 / 图片
def fetch_image(url): try: response = requests.get(url, headers=HEADERS) except Exception as e: raise e return response.content
指定 url,获取对应 JSON 返回 / 话题列表
def fetch_activities(url): try: response = requests.get(url, headers=HEADERS) except Exception as e: raise e return response.json()
处理返回的话题列表
def parser_activities(datums, face_detective): for data in datums["data"]: target = data["target"] if "content" not in target or "question" not in target or "author" not in target: continue html = etree.HTML(target["content"]) seq = 0 title = target["question"]["title"] author = target["author"]["name"] images = html.xpath("//img/@src") for image in images: if not image.startswith("http"): continue image_data = fetch_image(image) score = face_detective(image_data) if not score: continue name = "{}--{}--{}--{}.jpg".format(score, author, title, seq) seq = seq + 1 path = Path(__file__).parent.joinpath("image").joinpath(name) try: f = open(path, "wb") f.write(image_data) f.flush() f.close() print(path) time.sleep(2) except Exception as e: continue if not datums["paging"]["is_end"]: return datums["paging"]["next"] else: return None
初始化颜值检测工具
def init_detective(app_id, api_key, secret_key): client = AipFace(app_id, api_key, secret_key) options = {"face_field": "age,gender,beauty,qualities"} def detective(image): image = str(base64.b64encode(image), "utf-8") response = client.detect(str(image), "BASE64", options) response = response.get("result") if not response: return if (not response) or (response["face_num"] == 0): return face_list = response["face_list"] if pydash.get(face_list, "0.face_probability") < 0.6: return if pydash.get(face_list, "0.beauty") < BEAUTY_THRESHOLD: return if pydash.get(face_list, "0.gender.type") != "female": return score = pydash.get(face_list, "0.beauty") return score return detective
程序入口
def main(): face_detective = init_detective(APP_ID, API_KEY, SECRET_KEY) url = BASE_URL % SOURCE + URL_QUERY while url is not None: datums = fetch_activities(url) url = parser_activities(datums, face_detective) time.sleep(5) if __name__ == '__main__': main()
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍Python爬取知乎图片代码实现解析,包括了Python爬取知乎图片代码实现解析的使用技巧和注意事项,需要的朋友参考一下 首先,需要获取任意知乎的问题,只需要你输入问题的ID,就可以获取相关的页面信息,比如最重要的合计有多少人回答问题。 问题ID为如下标红数字 编写代码,下面的代码用来检测用户输入的是否是正确的ID,并且通过拼接URL去获取该问题下面合计有多少答案。 完善图片下载部分
本文向大家介绍Python实现爬取知乎神回复简单爬虫代码分享,包括了Python实现爬取知乎神回复简单爬虫代码分享的使用技巧和注意事项,需要的朋友参考一下 看知乎的时候发现了一个 “如何正确地吐槽” 收藏夹,里面的一些神回复实在很搞笑,但是一页一页地看又有点麻烦,而且每次都要打开网页,于是想如果全部爬下来到一个文件里面,是不是看起来很爽,并且随时可以看到全部的,于是就开始动手了。 工具 1.Pyt
本文向大家介绍python实现爬虫下载美女图片,包括了python实现爬虫下载美女图片的使用技巧和注意事项,需要的朋友参考一下 本次爬取的贴吧是百度的美女吧,给广大男同胞们一些激励 在爬取之前需要在浏览器先登录百度贴吧的帐号,各位也可以在代码中使用post提交或者加入cookie 爬行地址:http://tieba.baidu.com/f?kw=%E7%BE%8E%E5%A5%B3&ie=utf-
本文向大家介绍PHP实现爬虫爬取图片代码实例,包括了PHP实现爬虫爬取图片代码实例的使用技巧和注意事项,需要的朋友参考一下 文字信息 我们尝试获取表的信息,这里,我们就用某校的课表来代替: 接下来我们就上代码: a.php 然后咱们就运行一下: 成功获取到课表; 图片获取 绝对链接 我们以百度图库的首页为例 b.php 然后,我们就获得了下面的页面: 相对链接 百度图库的图片的链接大部
本文向大家介绍php实现爬取和分析知乎用户数据,包括了php实现爬取和分析知乎用户数据的使用技巧和注意事项,需要的朋友参考一下 背景说明:小拽利用php的curl写的爬虫,实验性的爬取了知乎5w用户的基本信息;同时,针对爬取的数据,进行了简单的分析呈现。 php的spider代码和用户dashboard的展现代码,整理后上传github,在个人博客和公众号更新代码库,程序仅供娱乐和学习交流;如果有
本文向大家介绍Python爬虫实现百度图片自动下载,包括了Python爬虫实现百度图片自动下载的使用技巧和注意事项,需要的朋友参考一下 制作爬虫的步骤 制作一个爬虫一般分以下几个步骤: 分析需求分析网页源代码,配合开发者工具编写正则表达式或者XPath表达式正式编写 python 爬虫代码 效果预览 运行效果如下: 存放图片的文件夹: 需求分析 我们的爬虫至少要实现两个功能:一是搜索图片,二是自动