前段时间看了一期《最强大脑》,里面各种繁花曲线组合成了非常美丽的图形,一时心血来潮,想尝试自己用代码绘制繁花曲线,想怎么组合就怎么组合。
真实的繁花曲线使用一种称为繁花曲线规的小玩意绘制,繁花曲线规由相互契合大小两个圆组成,用笔插在小圆上的一个孔中,紧贴大圆的内壁滚动,就可以绘制出漂亮的图案。这个过程可以做一个抽象:有两个半径不相等的圆,大圆位置固定,小圆在大圆内部,小圆紧贴着大圆内壁滚动,求小圆上的某一点走过的轨迹。
进一步分析,小圆的运动可以分解为两个部分:小圆圆心绕大圆圆心公转、小圆绕自身圆心自转。设大圆圆心为A,半径为Ra,小圆圆心为B,半径为Rb,轨迹点为C,半径为Rc(BC距离),设小圆公转的弧度为θ [0,∞),如图:
因为大圆的圆心坐标是固定的,要求得小圆上的某点的轨迹,需要先求出小圆当前时刻的圆心坐标,再求出小圆自转的弧度,最后求出小圆上某点的坐标。
第一步:求小圆圆心坐标
小圆圆心的公转轨迹是一个半径为 RA- RB 的圆,求小圆圆心坐标,相当于是求半径为 RA- RB 的圆上θ 弧度对应的点的坐标。
圆上的点的坐标公式为:
x = r * cos(θ), y = r * sin(θ)
小圆圆心坐标为:( xa+ (Ra - Rb) * cos(θ), ya + (Ra - Rb) * sin(θ) )
第二步:求小圆自转弧度
设小圆自转弧度为α,小圆紧贴大圆运动,两者走过的路程相同,因此有:
Ra *θ = Rb *α
小圆自转弧度α = (Ra / Rb) *θ
第三步:求点C坐标
点C相对小圆圆心B的公转轨迹是一个半径为 Rc 的圆,类似第一步,有:
轨迹点C的坐标为:( xa+ Rc* cos(θ), ya+ Rc* sin(θ))
按照以上算法分析,用python代码实现如下:
# -*- coding: utf-8 -*- import math ''' 功能: 已知圆的圆心和半径,获取某弧度对应的圆上点的坐标 入参: center:圆心 radius:半径 radian:弧度 ''' def get_point_in_circle(center, radius, radian): return (center[0] + radius * math.cos(radian), center[1] - radius * math.sin(radian)) ''' 功能: 内外圆A和B,内圆A沿着外圆B的内圈滚动,已知外圆圆心、半径,已知内圆半径,已知公转弧度和绕点半径,计算绕点坐标 入参: center_A:外圆圆心 radius_A:外圆半径 radius_B:内圆半径 radius_C:绕点半径 radian:公转弧度 ''' def get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, radian): # 计算内圆圆心坐标 center_B = get_point_in_circle(center_A, radius_A - radius_B, radian) # 计算绕点弧度(公转为逆时针,则自转为顺时针) radian_C = 2.0*math.pi - ((radius_A / radius_B * radian) % (2.0*math.pi)) # 计算绕点坐标 return get_point_in_circle(center_B, radius_C, radian_C)
有两点需要注意:
(1)屏幕坐标系左上角为原点,垂直向下为Y正轴,与数学坐标系Y轴方向相反,所以第14行Y坐标为减法;
(2)默认公转为逆时针,则自转为顺时针,所以第30行求自转弧度时,使用了2π - α%(2π);
坐标已经计算出来,接下来使用pygame绘制。思想是以0.01弧度为一个步长,不断计算出新的坐标,把一系列坐标连起来就会形成轨迹图。
为了能够形成一个封闭图形,还需要知道绘制点什么时候会重新回到起点。想了一个办法,以X轴正半轴为基准线,每次绘制点到达基准线,计算此时绘制点与起点的距离,达到一定精度认为已经回到起点,形成封闭图形。
''' 计算两点距离(平方和) ''' def get_instance(p1, p2): return (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) ''' 功能: 获取绕点路径的所有点的坐标 入参: center:外圆圆心 radius_A:外圆半径 radius_B:内圆半径 radius_C:绕点半径 shift_radian:每次偏移的弧度,默认0.01,值越小,精度越高,计算量越大 ''' def get_points(center, radius_A, radius_B, radius_C, shift_radian=0.01): # 转为实数 radius_A *= 1.0 radius_B *= 1.0 radius_C *= 1.0 P2 = 2*math.pi # 一圈的弧度为 2PI R_PER_ROUND = int(P2/shift_radian/4) + 1 # 一圈需要走多少步(弧度偏移多少次) # 第一圈的起点坐标 start_point = get_point_in_child_circle(center, radius_A, radius_B, radius_C, 0) points = [start_point] # 第一圈的路径坐标 for r in range(1, R_PER_ROUND): points.append(get_point_in_child_circle(center, radius_A, radius_B, radius_C, shift_radian*r)) # 以圈为单位,每圈的起始弧度为 2PI*round,某圈的起点坐标与第一圈的起点坐标距离在一定范围内,认为路径结束 for round in range(1, 100): s_radian = round*P2 s_point = get_point_in_child_circle(center, radius_A, radius_B, radius_C, s_radian) if get_instance(s_point, start_point) < 0.1: break points.append(s_point) for r in range(1, R_PER_ROUND): points.append(get_point_in_child_circle(center, radius_A, radius_B, radius_C, s_radian + shift_radian*r)) return points
再加上绘制代码,完整代码如下:
# -*- coding: utf-8 -*- import math import random ''' 功能: 已知圆的圆心和半径,获取某弧度对应的圆上点的坐标 入参: center:圆心 radius:半径 radian:弧度 ''' def get_point_in_circle(center, radius, radian): return (center[0] + radius * math.cos(radian), center[1] - radius * math.sin(radian)) ''' 功能: 内外圆A和B,内圆A沿着外圆B的内圈滚动,已知外圆圆心、半径,已知内圆半径、公转弧度,已知绕点半径,计算绕点坐标 入参: center_A:外圆圆心 radius_A:外圆半径 radius_B:内圆半径 radius_C:绕点半径 radian:公转弧度 ''' def get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, radian): # 计算内圆圆心坐标 center_B = get_point_in_circle(center_A, radius_A - radius_B, radian) # 计算绕点弧度(公转为逆时针,则自转为顺时针) radian_C = 2.0*math.pi - ((radius_A / radius_B * radian) % (2.0*math.pi)) # 计算绕点坐标 center_C = get_point_in_circle(center_B, radius_C, radian_C) center_B_Int = (int(center_B[0]), int(center_B[1])) return center_B_Int, center_C ''' 计算两点距离(平方和) ''' def get_instance(p1, p2): return (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]) ''' 功能: 获取绕点路径的所有点的坐标 入参: center:外圆圆心 radius_A:外圆半径 radius_B:内圆半径 radius_C:绕点半径 shift_radian:每次偏移的弧度,默认0.01,值越小,精度越高,计算量越大 ''' def get_points(center_A, radius_A, radius_B, radius_C, shift_radian=0.01): # 转为实数 radius_A *= 1.0 radius_B *= 1.0 radius_C *= 1.0 P2 = 2*math.pi # 一圈的弧度为 2PI R_PER_ROUND = int(P2/shift_radian) + 1 # 一圈需要走多少步(弧度偏移多少次) # 第一圈的起点坐标 start_center, start_point = get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, 0) points = [start_point] centers = [start_center] # 第一圈的路径坐标 for r in range(1, R_PER_ROUND): center, point = get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, shift_radian*r) points.append(point) centers.append(center) # 以圈为单位,每圈的起始弧度为 2PI*round,某圈的起点坐标与第一圈的起点坐标距离在一定范围内,认为路径结束 for round in range(1, 100): s_radian = round*P2 s_center, s_point = get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, s_radian) if get_instance(s_point, start_point) < 0.1: break points.append(s_point) centers.append(s_center) for r in range(1, R_PER_ROUND): center, point = get_point_in_child_circle(center_A, radius_A, radius_B, radius_C, s_radian + shift_radian*r) points.append(point) centers.append(center) print(len(points)/R_PER_ROUND) return centers, points import pygame from pygame.locals import * pygame.init() screen = pygame.display.set_mode((600, 400)) clock = pygame.time.Clock() color_black = (0, 0, 0) color_white = (255, 255, 255) color_red = (255, 0, 0) color_yello = (255, 255, 0) center = (300, 200) radius_A = 150 radius_B = 110 radius_C = 50 test_centers, test_points = get_points(center, radius_A, radius_B, radius_C) test_idx = 2 draw_point_num_per_tti = 5 while True: for event in pygame.event.get(): if event.type==pygame.QUIT: pygame.quit() exit(0) screen.fill(color_white) pygame.draw.circle(screen, color_black, center, int(radius_A), 2) if test_idx <= len(test_points): pygame.draw.aalines(screen, (0, 0, 255), False, test_points[:test_idx], 1) if test_idx < len(test_centers): pygame.draw.circle(screen, color_black, test_centers[test_idx], int(radius_B), 1) pygame.draw.aaline(screen, color_black, test_centers[test_idx], test_points[test_idx], 1) test_idx = min(test_idx + draw_point_num_per_tti, len(test_points)) clock.tick(50) pygame.display.flip()
效果:
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍python绘制高斯曲线,包括了python绘制高斯曲线的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了python绘制高斯曲线的具体代码,供大家参考,具体内容如下 源码: 效果图: 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持呐喊教程。
大家好,我需要一些帮助。我用Python(Tkinter)写了一个代码,它是绘制一个3度贝塞尔曲线,并且它是工作的。。。。kinda.我的问题是:我如何直接从键盘输入x和y坐标为控制点,而不是先x后y(像我的代码)。第二个问题是关于参数(u或t值。通常它是标准化的(值0到1),但对于循环将不工作的十进制值为步骤(我知道这是显而易见的:))。如果我把u=1-&>1000,然后除以1000,它在数字上
本文向大家介绍C#绘制曲线图的方法,包括了C#绘制曲线图的方法的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了C#绘制曲线图的方法。分享给大家供大家参考。具体如下: 1. 曲线图效果: 2. C#代码: 3. 数据缩小一个级别的效果: 4. 完整代码 DrawingCurve.cs: 希望本文所述对大家的C#程序设计有所帮助。
本文向大家介绍Python使用Pygame绘制时钟,包括了Python使用Pygame绘制时钟的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了Python使用Pygame绘制时钟的具体代码,供大家参考,具体内容如下 前提条件: 需要安装pygame 功能: 1.初始化界面显示一个时钟界面 2.根据当前的时间实现时针、分针、秒针的移动 运行结果: 以上就是本文的全部内容,希望对大家的学
我画了4条线从中心到按钮,我给你看的照片。我不知道如何在图片中画出红色的曲线。 [在此处输入图像说明] 或 [在此输入图像说明(更简单)]
如何连接多点与流动曲线,使用PyQt5?例如,我试图使用quitTo()对8个点执行此操作,使用交替点作为控制点,但弧不接触控制点(见下面的代码和图表)。我也尝试使用cubicTo(),但这也导致了一个奇怪的曲线。use是否有任何其他函数调用,我应该使用,或自定义的方式来做到这一点?