PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks
import torch import torch.nn as nn import torchvision import numpy as np print("PyTorch Version: ",torch.__version__) print("Torchvision Version: ",torchvision.__version__) __all__ = ['ResNet50', 'ResNet101','ResNet152'] def Conv1(in_planes, places, stride=2): return nn.Sequential( nn.Conv2d(in_channels=in_planes,out_channels=places,kernel_size=7,stride=stride,padding=3, bias=False), nn.BatchNorm2d(places), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1) ) class Bottleneck(nn.Module): def __init__(self,in_places,places, stride=1,downsampling=False, expansion = 4): super(Bottleneck,self).__init__() self.expansion = expansion self.downsampling = downsampling self.bottleneck = nn.Sequential( nn.Conv2d(in_channels=in_places,out_channels=places,kernel_size=1,stride=1, bias=False), nn.BatchNorm2d(places), nn.ReLU(inplace=True), nn.Conv2d(in_channels=places, out_channels=places, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(places), nn.ReLU(inplace=True), nn.Conv2d(in_channels=places, out_channels=places*self.expansion, kernel_size=1, stride=1, bias=False), nn.BatchNorm2d(places*self.expansion), ) if self.downsampling: self.downsample = nn.Sequential( nn.Conv2d(in_channels=in_places, out_channels=places*self.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(places*self.expansion) ) self.relu = nn.ReLU(inplace=True) def forward(self, x): residual = x out = self.bottleneck(x) if self.downsampling: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self,blocks, num_classes=1000, expansion = 4): super(ResNet,self).__init__() self.expansion = expansion self.conv1 = Conv1(in_planes = 3, places= 64) self.layer1 = self.make_layer(in_places = 64, places= 64, block=blocks[0], stride=1) self.layer2 = self.make_layer(in_places = 256,places=128, block=blocks[1], stride=2) self.layer3 = self.make_layer(in_places=512,places=256, block=blocks[2], stride=2) self.layer4 = self.make_layer(in_places=1024,places=512, block=blocks[3], stride=2) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(2048,num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def make_layer(self, in_places, places, block, stride): layers = [] layers.append(Bottleneck(in_places, places,stride, downsampling =True)) for i in range(1, block): layers.append(Bottleneck(places*self.expansion, places)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def ResNet50(): return ResNet([3, 4, 6, 3]) def ResNet101(): return ResNet([3, 4, 23, 3]) def ResNet152(): return ResNet([3, 8, 36, 3]) if __name__=='__main__': #model = torchvision.models.resnet50() model = ResNet50() print(model) input = torch.randn(1, 3, 224, 224) out = model(input) print(out.shape)
以上这篇PyTorch实现ResNet50、ResNet101和ResNet152示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。
本文向大家介绍Pytorch 实现focal_loss 多类别和二分类示例,包括了Pytorch 实现focal_loss 多类别和二分类示例的使用技巧和注意事项,需要的朋友参考一下 我就废话不多说了,直接上代码吧! 以上这篇Pytorch 实现focal_loss 多类别和二分类示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持呐喊教程。
本文向大家介绍pytorch中使用cuda扩展的实现示例,包括了pytorch中使用cuda扩展的实现示例的使用技巧和注意事项,需要的朋友参考一下 以下面这个例子作为教程,实现功能是element-wise add; (pytorch中想调用cuda模块,还是用另外使用C编写接口脚本) 第一步:cuda编程的源文件和头文件 第二步:C编程的源文件和头文件(接口函数) 第三步:编译,先编译cuda模
本文向大家介绍PyTorch线性回归和逻辑回归实战示例,包括了PyTorch线性回归和逻辑回归实战示例的使用技巧和注意事项,需要的朋友参考一下 线性回归实战 使用PyTorch定义线性回归模型一般分以下几步: 1.设计网络架构 2.构建损失函数(loss)和优化器(optimizer) 3.训练(包括前馈(forward)、反向传播(backward)、更新模型参数(update)) 迭代十次打印
本文向大家介绍Pytorch实现GoogLeNet的方法,包括了Pytorch实现GoogLeNet的方法的使用技巧和注意事项,需要的朋友参考一下 GoogLeNet也叫InceptionNet,在2014年被提出,如今已到V4版本。GoogleNet比VGGNet具有更深的网络结构,一共有22层,但是参数比AlexNet要少12倍,但是计算量是AlexNet的4倍,原因就是它采用很有效的Ince
本文向大家介绍PyTorch上搭建简单神经网络实现回归和分类的示例,包括了PyTorch上搭建简单神经网络实现回归和分类的示例的使用技巧和注意事项,需要的朋友参考一下 本文介绍了PyTorch上搭建简单神经网络实现回归和分类的示例,分享给大家,具体如下: 一、PyTorch入门 1. 安装方法 登录PyTorch官网,http://pytorch.org,可以看到以下界面: 按上图的选项选择后即可
本文向大家介绍PyTorch中的C++扩展实现,包括了PyTorch中的C++扩展实现的使用技巧和注意事项,需要的朋友参考一下 今天要聊聊用 PyTorch 进行 C++ 扩展。 在正式开始前,我们需要了解 PyTorch 如何自定义module。这其中,最常见的就是在 python 中继承torch.nn.Module,用 PyTorch 中已有的 operator 来组装成自己的模块。这种方式