以下面这个例子作为教程,实现功能是element-wise add;
(pytorch中想调用cuda模块,还是用另外使用C编写接口脚本)
第一步:cuda编程的源文件和头文件
// mathutil_cuda_kernel.cu // 头文件,最后一个是cuda特有的 #include <curand.h> #include <stdio.h> #include <math.h> #include <float.h> #include "mathutil_cuda_kernel.h" // 获取GPU线程通道信息 dim3 cuda_gridsize(int n) { int k = (n - 1) / BLOCK + 1; int x = k; int y = 1; if(x > 65535) { x = ceil(sqrt(k)); y = (n - 1) / (x * BLOCK) + 1; } dim3 d(x, y, 1); return d; } // 这个函数是cuda执行函数,可以看到细化到了每一个元素 __global__ void broadcast_sum_kernel(float *a, float *b, int x, int y, int size) { int i = (blockIdx.x + blockIdx.y * gridDim.x) * blockDim.x + threadIdx.x; if(i >= size) return; int j = i % x; i = i / x; int k = i % y; a[IDX2D(j, k, y)] += b[k]; } // 这个函数是与c语言函数链接的接口函数 void broadcast_sum_cuda(float *a, float *b, int x, int y, cudaStream_t stream) { int size = x * y; cudaError_t err; // 上面定义的函数 broadcast_sum_kernel<<<cuda_gridsize(size), BLOCK, 0, stream>>>(a, b, x, y, size); err = cudaGetLastError(); if (cudaSuccess != err) { fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err)); exit(-1); } }
#ifndef _MATHUTIL_CUDA_KERNEL #define _MATHUTIL_CUDA_KERNEL #define IDX2D(i, j, dj) (dj * i + j) #define IDX3D(i, j, k, dj, dk) (IDX2D(IDX2D(i, j, dj), k, dk)) #define BLOCK 512 #define MAX_STREAMS 512 #ifdef __cplusplus extern "C" { #endif void broadcast_sum_cuda(float *a, float *b, int x, int y, cudaStream_t stream); #ifdef __cplusplus } #endif #endif
第二步:C编程的源文件和头文件(接口函数)
// mathutil_cuda.c // THC是pytorch底层GPU库 #include <THC/THC.h> #include "mathutil_cuda_kernel.h" extern THCState *state; int broadcast_sum(THCudaTensor *a_tensor, THCudaTensor *b_tensor, int x, int y) { float *a = THCudaTensor_data(state, a_tensor); float *b = THCudaTensor_data(state, b_tensor); cudaStream_t stream = THCState_getCurrentStream(state); // 这里调用之前在cuda中编写的接口函数 broadcast_sum_cuda(a, b, x, y, stream); return 1; }
int broadcast_sum(THCudaTensor *a_tensor, THCudaTensor *b_tensor, int x, int y);
第三步:编译,先编译cuda模块,再编译接口函数模块(不能放在一起同时编译)
nvcc -c -o mathutil_cuda_kernel.cu.o mathutil_cuda_kernel.cu -x cu -Xcompiler -fPIC -arch=sm_52
import os import torch from torch.utils.ffi import create_extension this_file = os.path.dirname(__file__) sources = [] headers = [] defines = [] with_cuda = False if torch.cuda.is_available(): print('Including CUDA code.') sources += ['src/mathutil_cuda.c'] headers += ['src/mathutil_cuda.h'] defines += [('WITH_CUDA', None)] with_cuda = True this_file = os.path.dirname(os.path.realpath(__file__)) extra_objects = ['src/mathutil_cuda_kernel.cu.o'] # 这里是编译好后的.o文件位置 extra_objects = [os.path.join(this_file, fname) for fname in extra_objects] ffi = create_extension( '_ext.cuda_util', headers=headers, sources=sources, define_macros=defines, relative_to=__file__, with_cuda=with_cuda, extra_objects=extra_objects ) if __name__ == '__main__': ffi.build()
第四步:调用cuda模块
from _ext import cuda_util #从对应路径中调用编译好的模块 a = torch.randn(3, 5).cuda() b = torch.randn(3, 1).cuda() mathutil.broadcast_sum(a, b, *map(int, a.size())) # 上面等价于下面的效果: a = torch.randn(3, 5) b = torch.randn(3, 1) a += b
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍PyTorch中的C++扩展实现,包括了PyTorch中的C++扩展实现的使用技巧和注意事项,需要的朋友参考一下 今天要聊聊用 PyTorch 进行 C++ 扩展。 在正式开始前,我们需要了解 PyTorch 如何自定义module。这其中,最常见的就是在 python 中继承torch.nn.Module,用 PyTorch 中已有的 operator 来组装成自己的模块。这种方式
译者:PEGASUS1993 本章中,将要介绍使用我们的C库如何扩展torch.nn,torch.autograd和编写自定义的C扩展工具。 扩展torch.autograd 添加操作autograd需要Function为每个操作实现一个新的子类。回想一下,Function使用autograd来计算结果和梯度,并对操作历史进行编码。每个新功能都需要您实现两种方法: forward() - 执行操作
本篇文章中包含如何扩展 torch.nn, torch.autograd和 使用我们的 C 库编写自定义的C扩展。 扩展 torch.autograd 如果你想要添加一个新的 Operation 到autograd的话,你的Operation需要继承 class Function。autograd使用Function计算结果和梯度,同时编码 operation的历史。每个新的 operation(
本文向大家介绍Ruby使用C++扩展实例(含C++扩展代码示例),包括了Ruby使用C++扩展实例(含C++扩展代码示例)的使用技巧和注意事项,需要的朋友参考一下 早年写过用C++ + SWIG写Ruby插件的文,但实际中还是以原生C++写Ruby扩展,因为也相当简单。但长久没用还是会忘记,不得不翻以前的老代码回忆,写下这篇博文,若下次再忘记,也不至于去翻仓库。 建立 extconf.rb 建立
本文向大家介绍PHP使用openssl扩展实现加解密方法示例,包括了PHP使用openssl扩展实现加解密方法示例的使用技巧和注意事项,需要的朋友参考一下 从PHP7版本开始很多依赖mcrypt扩展的方法都不支持了,PHP7.2.0及以上版本已经完全不支持mcrypt扩展的任何方法了,所以PHP7及以上版本都应该使用openssl扩展来实现加解密。 以DES-CBC加密方式为例: 到此这篇关于PH
SPI 扩展接口仅用于系统集成,或 Contributor 扩展功能插件。