在本教程中,我们将学习使用pandas 库合并,联接和连接DataFrame 。我认为您已经熟悉数据框和熊猫库。让我们一一看这三个操作。
我们有一个名为pandas.merge()的方法,该方法类似于数据库联接操作 来合并数据帧。请按照以下步骤获得所需的输出。合并 方法将公共列用于合并操作。
初始化数据框。
调用带有三个参数数据帧的方法pandas.merge(),如何(定义数据库联接操作)在(数据帧的公共字段)上。
让我们来看一个例子。
# importing the pandas library import pandas # creating dataframes dataframe_1 = pandas.DataFrame({"Common": ["A", "B", "C", "D", "E"], "Name": ["John", "Alice", "Emma", "Watson", "Harry"], "Age": [18, 19, 20, 21, 15]}) dataframe_2 = pandas.DataFrame({"Common": ["A", "B", "C", "D", "E"], "Sport": ["Cricket", "Football", "Table Tennis", "Badminton", "Chess"], "Movie": ["Jumanji", "Black Widow", "End Game", "Mr. Robot", "Matrix"]}) # merging using merge method # how = left or right or inner new_df = pandas.merge(dataframe_1, dataframe_2, how="left", on="Common") # printing the resultant dataframe print(new_df)
输出结果
如果运行上面的代码,您将得到以下结果。
Common Name Age Sport Movie 0 A John 18 Cricket Jumanji 1 B Alice 19 Football Black Widow 2 C Emma 20 Table Tennis End Game 3 D Watson 21 Badminton Mr. Robot 4 E Harry 15 Chess Matrix
与merge方法类似,我们有一个称为dataframe.join(dataframe)的方法用于连接数据框。让我们看看将两个数据框合并为一个的步骤。join方法使用数据帧的索引。
初始化数据帧。
编写一个语句dataframe_1.join(dataframe_2)加入。
让我们尝试一下编码示例。
# importing the pandas library import pandas # creating dataframes dataframe_1 = pandas.DataFrame({"Name": ["John", "Alice", "Emma", "Watson", "Harry"], "Age": [18, 19, 20, 21, 15]}, index = ["A", "B", "C", "D", "E"])dataframe_2 = pandas.DataFrame({"Sport": ["Cricket", "Football", "Table Tennis", "Badminton", "Chess"], "Movie": ["Jumanji", "Black Widow", "End Game", "Mr. Robot", "Matrix"]}, index = ["A", "B", "C", "D", "E"]) # joining new_df = dataframe_1.join(dataframe_2) # printing the new dataframe print(new_df)
如果运行上述程序,将得到以下输出
输出结果
Name Age Sport Movie A John 18 Cricket Jumanji B Alice 19 Football Black Widow C Emma 20 Table Tennis End Game D Watson 21 Badminton Mr. Robot E Harry 15 Chess Matrix
与merge和join方法类似,我们有一个称为pandas.concat(list-> dataframes)的方法来连接数据帧。让我们看看连接数据帧的步骤。串联将数据帧合并为一个。
初始化数据帧。
使用pandas.concat([df_1,df_2,..])连接数据帧。打印结果。
让我们尝试一下编码示例。
# importing the pandas library import pandas # creating dataframes dataframe_1 = pandas.DataFrame({"Name": ["John","Alice","Emma","Watson","Harry"], "Age": [18, 19, 20, 21, 15]}, index = ["A", "B", "C", "D", "E"]) dataframe_2 = pandas.DataFrame({"Name": ["Wick", "Robert", "Elliot", "Baby", "Cruise"], "Age": [22, 20, 45, 15, 42]}, index = ["F", "G", "H", "I", "J"]) # concatenating -> you can pass any number of new_df = pandas.concat([dataframe_1, dataframe_2]) # printing the new dataframe print(new_df)
输出结果
如果运行上述程序,将得到以下输出。
Name Age A John 18 B Alice 19 C Emma 20 D Watson 21 E Harry 15 F Wick 22 G Robert 20 H Elliot 45 I Baby 15 J Cruise 42
如果您对本教程有任何疑问,请在评论部分中提及。
问题内容: 问题 表格1: 表2: 表3: 给定键(A1或A2),我需要使用表2中的相应值更新表1中的DataColumn1和DataColumn2列。 因此,table1可以更新x个行,如上面的数据所示。如果我要更新A1,则01和02行都应更新 (因此,表01中的值对于键01和键02的datacolumn1分别为0.15和1.2(对于datacolumn2)) 到目前为止我尝试过的是: 问题:
问题内容: 我想使用中的多个表中的数据。我有两种从服务器下载数据的想法,一种方法是使用联接和检索数据,一种方法是分别下载数据帧并使用pandas.merge合并它们。 当我想将数据下载到。 熊猫合并 哪一个更快?假设我要对2个以上的表和2个列执行此操作。有什么更好的主意吗?如果有必要知道我使用。 问题答案: 前者比后者快。前者仅需对数据库进行一次调用,并返回已加入并已过滤的结果。但是,后者对数据库
问题内容: 我有2个数据框: restaurant_ids_dataframe 和 restaurant_review_frame 我想使用熊猫中的DataFrame.join()命令将这两个DataFrame加入一个单一的数据框中。 我尝试了以下代码行: 但是,当我尝试这样做时,出现以下错误: 我对熊猫很陌生,不知道就执行join语句而言我在做什么错。 任何帮助将非常感激。 问题答案: 您可以使
一、本功能说明 可以自动批量的将内容里面的关键词语加上超链接 二、子功能导航 1.添加连接 2.管理连接 三、功能详解 1.添加规则 1).如何进入本功能 导航栏 选择扩展 -> 菜单栏 选择关联连接 -> 添加关联连接 2).界面解释 点击后弹出如下界面 界面详述 1). 关联连接名称: 您可以需要添加连接的关键字 2). 关联连接网址: 该关键字对应的网址 2.管理连接 1).如何进入本功能
主要内容:concat(),append()Pandas 通过 concat() 函数能够轻松地将 Series 与 DataFrame 对象组合在一起,函数的语法格式如下: pd.concat(objs,axis=0,join='outer',join_axes=None,ignore_index=False) 参数说明如下所示: 参数名称 说明 objs 一个序列或者是Series、DataFrame对象。 axis 表示在哪个轴方向
我有两个列表,我想离开加入一个。 当我尝试这样做时,我会得到同样的错误: 运行dtypes将两个列表标识符作为Object返回。