Index 基本遵从《统计学习方法》一书中的符号表示。 除特别说明,默认w为行向量,x为列向量,以避免在wx 中使用转置符号;但有些公式为了更清晰区分向量与标量,依然会使用^T的上标,注意区分。 输入实例x的特征向量记为: 注意:x_i 和 x^(i) 含义不同,前者表示训练集中第 i 个实例,后者表示特征向量中的第 i 个分量;因此,通常记训练集为: 特征向量用小n表示维数,训练集用大N表示个数
Reference CS229 课程讲义(中文) - Kivy-CN - GitHub 超参数选择 Grid Search 网格搜索 在高维空间中对一定区域进行遍历 Random Search 在高维空间中随机选择若干超参数 相关库(未使用) Hyperopt 用于超参数优化的 Python 库,其内部使用 Parzen 估计器的树来预测哪组超参数可能会得到好的结果。 GitHub - https
偏差与方差 《机器学习》 2.5 偏差与方差 - 周志华 偏差与方差分别是用于衡量一个模型泛化误差的两个方面; 模型的偏差,指的是模型预测的期望值与真实值之间的差; 模型的方差,指的是模型预测的期望值与预测值之间的差平方和; 在监督学习中,模型的泛化误差可分解为偏差、方差与噪声之和。 偏差用于描述模型的拟合能力; 方差用于描述模型的稳定性。 导致偏差和方差的原因 偏差通常是由于我们对学习算法做了错
机器学习 概述 机器学习(Machine Learning,ML) 是使用计算机来彰显数据背后的真实含义,它为了把无序的数据转换成有用的信息。是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及
机器学习是人工智能的一个分支,它是一门研究机器获取新知识和新技能,并识别现有知识的学问。机器学习的精确定义为: It’s a computer program learning from experience E with respect to some task T and some performance measure P, if its performance on T as measur
挂载主机目录 挂载一个主机目录作为数据卷 使用 --mount 标记可以指定挂载一个本地主机的目录到容器中去。 $ docker run -d -P \ --name web \ # -v /src/webapp:/opt/webapp \ --mount type=bind,source=/src/webapp,target=/opt/webapp \ training/
最近在看斯坦福大学的机器学习的公开课,学习了支持向量机,再结合网上各位大神的学习经验总结了自己的一些关于支持向量机知识。 一、什么是支持向量机(SVM)? 1、支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析。支持向量机属于一般化线性分类器,这族分类器的特点是他们能够同时最小化经验误差与最大化几何边缘区,因此支持向
在随机森林方法中,创建了大量决策树。 每个观察都被送入每个决策树。 每次观察的最常见结果用作最终输出。 一个新的观察结果被输入所有树木,并对每个分类模型进行多数投票。 对构建树时未使用的情况进行错误估计。 这称为OOB (Out-of-bag)错误估计,以百分比形式提及。 R包"randomForest"用于创建随机森林。 安装R包 在R控制台中使用以下命令安装程序包。 您还必须安装依赖包(如果有
以下服务属于“应用服务”部分 - 亚马逊CloudSearch 亚马逊简单队列服务(SQS) 亚马逊简单通知服务(SNS) 亚马逊简单电子邮件服务(SES) 亚马逊SWF 在本章中,我们将讨论Amazon SWF。 Amazon Simple Workflow Service (SWF)是一种基于任务的API,可以轻松协调跨分布式应用程序组件的工作。 它提供了一种编程模型和基础结构,用于协调分布式
Amazon Machine Learning是一种服务,允许通过使用算法,基于用户数据的数学模型开发预测应用程序。 Amazon Machine Learning通过Amazon S3,Redshift和RDS读取数据,然后通过AWS管理控制台和Amazon Machine Learning API可视化数据。 可以通过S3存储桶将此数据导入或导出到其他AWS服务。 它使用“行业标准逻辑回归”算
机器学习(Machine Learning,ML) 是使用计算机来彰显数据背后的真实含义,它为了把无序的数据转换成有用的信息。
机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。
Parrot 是一个虚拟机,旨在有效地编译和执行解释语言的字节码。 Parrot 专为动态语言而设计。 Parrot 是各种语言的目标,如 Perl,Tcl,Ruby,Python 等。
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。
神经网络是一门重要的机器学习技术,它通过模拟人脑的神经网络来实现人工智能的目的,所以其也是深度学习的基础,了解它之后自然会受益颇多。