7.24 笔试 8.11 一面 自我介绍 项目1介绍(深挖) 项目2介绍(深挖) 代码:找到离给定两个节点最近的节点(力扣2359) 8.29 二面 自我介绍 项目1介绍(细挖) 项目2介绍(细挖) 专利介绍 反问 9.1 HR面 自我介绍 家庭情况 大学生活 研究生生活 未来规划 对象问题 #虹软#
时长:1h30min 因为岗位比较匹配所以问了不少,鼠鼠第一次面这么匹配的岗位,面试官很有水平,学到了很多东西。 1.自我介绍 2.深挖项目和实习,简历上提到的都问了,中间穿插了八股 1)具有旋转不变性的图像算法 2)transformer中为什么除以根号dk?dk怎么来的? 3)传统的图像处理方法有哪些? 4)滤波,去燥 5)中值滤波用在什么地方? 6)哪些滤波能保持边缘信息? 3.手撕lc69
7.15 笔试 7.20 一面 无自我介绍 介绍项目 Anchor-free标签匹配方式 小目标信息丢失问题 基线选择 模型压缩技术 代码 7.1 求均方根 7.2 Softmax函数 7.3 交叉熵损失函数 7.27 二面 自我介绍 项目介绍 传统方法如何处理多尺度目标共存问题 双模态语义分割框架 语义分割损失函数 语义分割常见问题 边界模糊问题 点云配准及应用 凉~ #陌陌面试#
##好未来#秋招:一面面经,应该是凉经,趁着热乎记录一下。 1、30分钟的项目,根据你的简历上的项目进行提问,问的地方比较细,也会问你对这个方向的一些看法和理解。 2、5分钟左右的八股,但是这个八股主要还是涉及到多模态大模型的部分,我不太了解,只是在一个项目中用过多模态大模型,所以这部分比较快 3、手撕,竟然没手撕力扣的,手撕一个分割的评价指标,我主要做检测的,分割很久不碰了,不过在帮助下还是磕磕
四月很多面试都推掉了,所以只面了两个厂,字节和虹软。顺便问下,华为暑期实习不推进的话会影响秋招吗? 字节一面: 自我介绍 分类和回归常见的损失函数? 逻辑斯蒂,hingeloss,l1,BCE,focal等等 BCE的公式是什么,和KL散度的关系和区别? 一部分log的系数不一样 selfattention的原理和过程 为什么selfattention能注意该注意的地方,你能数学证明出来吗? 我能
8.2 测评 8.26 一面 所有项目逐个介绍(细挖) ResNet中的BottleNeck结构 9.7 HR面 自我介绍 项目介绍 家庭情况 父母对自己工作的期望 研究所和企业工作的选择 职业规划 对象问题 读研期间导师对自己的影响 自己的性格介绍 自己的缺点 薪资意向 岗位的理解 反问 9.28 录用评估 #海康面试#
智能算法部 30min 看你实习用过SAM,讲一下原理 SAM模型的分割图目前没有语义标签,说一下改进的思路 说到了无监督语义分割,怎么实现的 讲一下实习做的工作 讲一下两篇论文的工作 讲一下医学图像分割与自然图像分割的区别与难点,近几年论文的研究方向 医学图像分割和自然图像分割的落地应用有哪些,落地的难点 dice系数怎么算 用过哪些分割损失,Lovasz loss用过没 未来想做研究还是做工程
9.11 时长正好60min 首先百度是给我最魔幻体验的公司了,因为一开始自己投了另一个也叫计算机视觉的岗,两天就共享中了,结果前几天自己变更了职位给自己捞进来面试了,自己最近疯狂被简历挂收到面试已经属于正反馈了,就冲这一点我这网盘大会员得永久续费了 然后第二点,自己今天的外出任务出了点意外导致不能按原定时间来,本来没报希望问了下HR,结果HR真给我沟通延迟了一小时!呜呜呜度子这恩情你让我怎么还啊
问是否是面试实习岗(否 针对简历中的项目进行提问,重点是深度学习模型相关,模型结构 询问项目的细节 最后给俩道中等难度算法题,一道二叉树,一道链表 都没做出来,持续尴尬,面试40多分钟就结束了 刷题去了
先自我介绍,然后主要问项目的区别,yolov5主要改进点在哪,transform为什么能用于cv。你用yolov5跑模型,你的改进点在哪,效果提升多大。 看我用过tensorrt,介绍一下tensorrt优化的流程及常见的tricks。 代码题是二叉树的,不是子父节点的最大和。用dfs没做出来,少考虑了一种情况,然后就寄了。 #快手校招##算法工程师#
一、单选: 1、CLIP模型的主要创新点:图像和文本两种不同模态数据之间的深度融合、对比学习、自监督学习 2、一个3*3,stride=1,dilation=1的卷积加上一个步长为2的2*2池化,再加上一个3*3 ,stride=3,dilation=1的卷积对应的等效步长是多少:6(第一步不改变步长,第二步步长为2,第三步步长为2*3) 3、a=np.random.randn(3,3) b=np
4.18 技术面 问项目经历,多模态、大模型算法的了解和理解。手撕三个bbox的iou计算。 4.24 hr面 常规hr面。 4.26 发感谢信没过。
7.2 一面 专业问答环节 自我介绍 项目介绍 小目标问题及解决方法 精度的相对提升和绝对提升 双阶段和单阶段目标检测器的区别 Anchor-free和Anchor-base的区别 NMS在Anchor-free上是否有用 基于Transformer的目标检测框架介绍 像素级分类和语义分割的区别 关于NLP的最新进展 深度学习模型的部署 谈人生环节 对科大讯飞的了解 科大讯飞与自己的契合点 对人工
终于轮到我写面经了,之前因为拿不到oc一直不敢写,现在感觉成功了90%,就先半场开个香槟,攒攒人品。 bg:双9,非科班,一篇二区,一篇准备投二区,两个项目,一个项目论文,一个项目专利。 简历挂:360,携程,美团,阿里云 其中阿里云点名批评,hr给我打电话,问我要不要走他们部门的流程,如果走的话可能要一个月的时间,还贴心地说如果觉得部门不合适的话可以给我推到其他部门,我深受感动,当即同意进入流程
今天一面,我感觉大抵是凉了 投的时候看见里面有 3D 视觉岗,就投了,结果是智能创作平台捞的我,我一查发现他们是做生成模型的。虽然感觉凉的概率比较大,但是还是认真准备了 面试时,面试官问了什么是 stable diffusion 目标检测网络知道哪些,详细说下 对抗生成网络说下,大模型微调的策略都有哪些(这些我都答上了,不过其中 stable diffusion 的文本特征和图像特征怎么对齐,这个