自我介绍 c++,计网八股 好多好多 项目深挖 raft和跳表 学校科研和难点 手撕快排(中间脑子一抽写完partition就运行了,现在想想,麻了) 面试官好好!也很温柔~全防出去了!!许愿~ bilibili💕b小将,启动!#bilibili##机器学习#
快手一面凉经 算法 我迟到10分钟 面试45分钟 1. 和为k的连续数组 2.AUC 公式,物理意义,GAUC,auc缺点 3.L1 和L2 4. Dropout 训练预测区别 BN在哪些场景下不适用 5.Xgboost特点 6.损失函数评价函数,Huber 7.交叉熵公式 为什么分类用交叉熵不用Mae 8.生成式模型与判别式模型,NLP了解吗(我是做数据挖掘的, 认识不深,说不了解) 9.实习介
第一层、了解SVM 支持向量机,因其英文名为support vector machine,故一般简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。 1.1、线性分类 理解SVM,咱们必须先弄清楚一个概念:线性分类器。 1.1.1、分类标准 考虑一个二类的分类问题,数据点用x来表示,类别用y来
地狱一样的理论问询,今年秋招最难的一场…… 数学问了中心极限定理,大数定理,Γ分布和κ分布关系…… 机器学习问了特征选择,特征归一化,马尔科夫链,gibbs采样,集成学习,选择性偏差,决策树并行计算,xgboost和adaboost样本权重…… 深度学习问了卷积原理,梯度传播稳定性,BN本质,torch和tensorflow的图理论…… 大模型问了很多工程上的问题,出现loss spike啦,波峰
约的8点开始, 8点面试官进来后说要上卫生间,等到8点10分开始,一共60分钟。 1、开始先聊了会儿在字节实习的内容,主要聊场景; 2、聊完后开始问xgboost(简历有写),很细,都是答完后继续往下深挖,答的不好: 和GBDT的区别 什么场景用lr,什么场景用xgboost,什么场景用nn 构造树的过程 怎么来做多分类的 。。。 3、auc指标的含义 4、分类问题为什么用交叉熵不用mse,从公式
发个面经攒攒人品吧家人们😥 上来全是问基础,太烧脑了呜呜 1.面试官介绍了他们是支付宝广告技术部,主要做搜广推aigc大模型等,包括涉及的业务等 1.开始严刑拷打了呜呜。问我在阿里做aigc项目,主要负责了哪块?问相关的vision transformer有没有了解过?我说没有只看过transformer,然后就问那你说说transformer。。。 2.问了神经网络中最大池化层的反向传播怎么算
更新:已挂 9月1号投递的算法工程师-机器学习岗,高德部门 9.5一面 (50min) 总结:面试分四部分:简历项目+基础知识+场景题+做题 自我介绍 简历项目比赛介绍+提问 问了许多深度学习和机器学习的基础知识: 卷积 vs 全连接 怎么理解卷积? 图片的物体发生位移或扰动,对CNN有影响吗? 池化的作用 随机森林 vs GBDT 随机森林和GBDT的基分类器可以改成线性分类器或者其他吗? 分类
9.7一面 (约40min) 自我介绍 项目比赛介绍,没有深挖 进程和线程区别 数组和链表的区别 递归和非递归的区别(除了栈这方面) 快排的时间复杂度,快排稳定吗 类似的基础问题等等(想不起来了。。。) 二叉树了解吗?还行 撕题:非递归中序遍历二叉树 反问 总体感觉面试比较简单,上午面完,下午通知下周二面 9.13二面 (约20min) 自我介绍 问了一个比赛,大概十来分钟 反问 面完下来一查秒挂
上午在床上睡觉接到电话说要面试,推到下午了 时长:40min 1.自我介绍 2.项目深挖,问到了两个项目,主要包括背景,模型流程等 3.八股: 1)如何判断一个模型过拟合或者欠拟合? 2)如何解决过拟合? 3)L1L2正则有什么效果? 4.反问: 1)部门业务:菜鸟APP的推荐内容 2)是否介意没有相关背景的同学 3)后续流程?1-2轮技术面+hr面 4)base地情况 挺好的,面完秒挂
不用自我介绍,就是聊项目,面试官人特别好,我特别菜 大概讲了讲项目后做算法题, 第一题self-attention,用pytorch,继承pytorch.nn.Module写forward函数,没写出来,如果写出来了应该会继续写mask self-attention 第二题求前K个高频数 第三题二叉树 前序遍历中序遍历后序遍历 然后根据后序和中序结果写前序遍历 机器学习问了过拟合 决策树,xgb和
2024/08/29 14:00(50分钟) 这个岗位是学长内推的,不是我研究的方向所以没有项目,一面也没有八股啥的,主要考察了下代码能力和思考问题的能力吧 手撕:判断序列能否划分成两个和相等的子集(背包),网格路径最小(动态规划) 还一个概率论的题目就不透露了
电话面+邮箱发alitcode链接进行coding考察 ----------------------------------------------------------------------------------------------------------- 没有让做自我介绍,直接对着简历问项目。 第一个项目是用seq-to-seq做的缺陷自动修复,问我将NLP应用到软工领域有什么痛点
这次面试官没有迟到,没有机会水了。。。 不过是个女面试官,非常亲和的感觉 开局自我介绍,讲了一下学的课程内容和做的课设项目,了解了一下大概情况 重点分析讲了一下数据竞赛的内容 八股: 1.讲一下集成学习的一些算法 2.GBDT,XGBoost,LightGBM各自有什么优势劣势,适用情况 3.独热编码和embedding的用途,各自优势,为什么用 4.为什么在项目中用了GBDT而不是RF 5.讲一
开局面试官迟到6分钟。。。 自我介绍了一下就10分钟了 问了一下自我介绍说的开源经历和项目,问了个项目地址 问了大模型SFT和LORA的区别和应用 然后八股和项目就一点不问了?????? 我早起背了这么多机器学习的八股有啥用? 然后手撕了一道快速排序,写了个测试用例就快速下班了 反问: 1.部门业务:百度地图数据分析处理,机器学习做预测,自动化 2.岗位竞争:说小于10个人在面,应该不止一个1个h
本文向大家介绍python机器学习之神经网络(一),包括了python机器学习之神经网络(一)的使用技巧和注意事项,需要的朋友参考一下 python有专门的神经网络库,但为了加深印象,我自己在numpy库的基础上,自己编写了一个简单的神经网络程序,是基于Rosenblatt感知器的,这个感知器建立在一个线性神经元之上,神经元模型的求和节点计算作用于突触输入的线性组合,同时结合外部作用的偏置,对若干