每次将一个类别作为正类,其余类别作为负类。此时共有(N个分类器)。在测试的时候若仅有一个分类器预测为正类,则对应的类别标记为最终的分类结果。 【例】当有4个类别的时候,每次把其中一个类别作为正类别,其余作为负类别,共有4种组合,对于这4中组合进行分类器的训练,我们可以得到4个分类器。对于测试样本,放进4个分类器进行预测,仅有一个分类器预测为正类,于是取这个分类器的结果作为预测结果,分类器2预测的结果是类别2,于是这个样本便属于类别
一面4.3 问了下GNN相关的知识(由于我是graph背景) 以及机器学习的基础知识 二面4.10 问了下实习的项目以及之前做过一深度学习相关的东西 特别细 #你收到了团子的OC了吗# offer4.17
这个教程的目标读者是对机器学习和TensorFlow都不太了解的新手。如果你已经了解MNIST和softmax回归(softmax regression)的相关知识,你可以阅读这个快速上手教程。 当我们开始学习编程的时候,第一件事往往是学习打印"Hello World"。就好比编程入门有Hello World,机器学习入门有MNIST。 MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字
大多数人听到“机器学习”,往往会在脑海中勾勒出一个机器人:一个可靠的管家,或是一个可怕的终结者,这取决于你问的是谁。但是机器学习并不是未来的幻想,它已经来到我们身边了。事实上,一些特定领域已经应用机器学习几十年了,比如光学字符识别 (Optical Character Recognition,OCR)。但是直到 1990 年代,第一个影响了数亿人的机器学习应用才真正成熟,它就是垃圾邮件过滤器(sp
大多数人听到“机器学习”,往往会在脑海中勾勒出一个机器人:一个可靠的管家,或是一个可怕的终结者,这取决于你问的是谁。但是机器学习并不是未来的幻想,它已经来到我们身边了。事实上,一些特定领域已经应用机器学习几十年了,比如光学字符识别 (Optical Character Recognition,OCR)。但是直到 1990 年代,第一个影响了数亿人的机器学习应用才真正成熟,它就是垃圾邮件过滤器(sp
平台列表 Google Cloud AI Cloud Machine Learning Engine 托管的机器学习服务 AutoML 自动化机器学习 机器学习API,如 Jobs, Video Intelligence, Vision, Speech, Natual Language 以及 Tanslation 等 Amazon Machine Learning SageMaker 自动化机器学
这份文件的目的是要提供 Python 之机器学习套件 scikit-learn (http://scikit-learn.org/) 的中文使用说明。一开始的主要目标是详细说明 scikit-learn 套件中的范例程式的使用流程以及相关函式的使用方法。目前使用版本为 scikit-learn version 0.19 以上
Python 是一种通用的高级编程语言,越来越多地用于数据科学和设计机器学习算法。 本教程简要介绍了 Python 及其库,如 numpy,scipy,pandas,matplotlib,并解释了如何应用它来开发解决实际问题的机器学习算法。
一面: 自我介绍、极大似然估计、假设检验、朴素贝叶斯的公式、逻辑回归损失函数是什么,怎么来的(对数损失,等价于极大似然估计)、说说xgboost(我说了目标函数推导,还有一些过拟合措施等等)、了解transformer吗(没细问)、看过源码吗(没看过)、卷积为什么叫卷积(我随便说了个卷积公式,但不对)、对卷积的理解(我说滤波,因为我跟一维卷积打交道比较多,我还举了个人脸识别例子,我说底层的卷积会提
9.3一面(1h) 面试官先做了自我介绍 自我介绍 简历上项目比赛介绍、提问 附加问题:矩阵乘法,前向网络计算和反向传播计算梯度哪个更耗时?矩阵C = A*B,已知Grad(C),计算A和B的梯度 手撕算法题:类似LC上合并k个有序链表,将一个二维数组合并成一维数组,二维数组每行是有序的,合并k行到一行并保证有序。用堆做的,并分析算法的时间复杂度。 反问:业务内容?主要是做自动驾驶里的Planni
一面 自我介绍 介绍一个比较熟悉的项目或实习→介绍了实习 问实习: 描述任务 如何评估算法效果? 遇到那些问题?如何解决的? 追问DID和PSM具体做法 追问PSM的原理,问到PS的匹配方式?逻辑回归的标签是什么? 手撕:lc076.数组中的第k个最大值(没写出最优解法) 反问业务 当天晚上看官网进程:已挂 唉,感觉也挺对口,回答得也还算可以啊,可能就是手撕不行,手撕真的一座大山,每次都过得艰难,
1. 项目相关,问了很多 2. 数据不平衡问题怎么解决,分类指标,多分类指标是怎么计算的 3. 集成学习了解吗 4. 一般怎么调参; 5. 超参和参数的区别 6. 一般使用python哪些包?
本文向大家介绍学习php设计模式 php实现装饰器模式(decorator),包括了学习php设计模式 php实现装饰器模式(decorator)的使用技巧和注意事项,需要的朋友参考一下 动态的给一个对象添加一些额外的职责。就增加功能来说,Decorator模式相比生成子类更为灵活【GOF95】 装饰模式是以对客户透明的方式动态地给一个对象附加上更多的职责。这也就是说,客户端并不会觉得对象在装饰前
本文向大家介绍java实现可视化界面肯德基(KFC)点餐系统代码实例,包括了java实现可视化界面肯德基(KFC)点餐系统代码实例的使用技巧和注意事项,需要的朋友参考一下 一、题目 使用java实现可视化KFC点餐系统。 二、题目分析 根据java中的用户图形界面包中的各个类设计界面。利用JFrame提供最大的容器,然后设计各个面板,各个面板中添加所需要的组件,本程序中需要对按钮组件添加监听者,当
本文向大家介绍儿童python练习实例,包括了儿童python练习实例的使用技巧和注意事项,需要的朋友参考一下 实例一: 题目:有四个数字:1、2、3、4,能组成多少个互不相同且无重复数字的三位数?各是多少? 程序分析:可填在百位、十位、个位的数字都是1、2、3、4。组成所有的排列后再去 掉不满足条件的排列(只要百不等于十位并且不等于个位)。 实例(Python 2.0+) 实例二: 题目:企业发